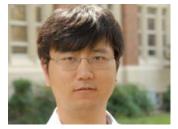

Magnified Views of Relativistic Outflows in Gravitationally Lensed Quasars

Presented by: George Chartas


In collaboration with:

Chris Kochanek (OSU)

Carter Rhea (CofC)

Xinyu Dai (OU)

Ana Mosquera (USNA)

Chelsea MacLeod (IfA)

Jeffrey Blackburne (OSU)

Bin Chen (FSU)

Christopher Morgan (USNA)

... and with:

Fred Hamann (UF)

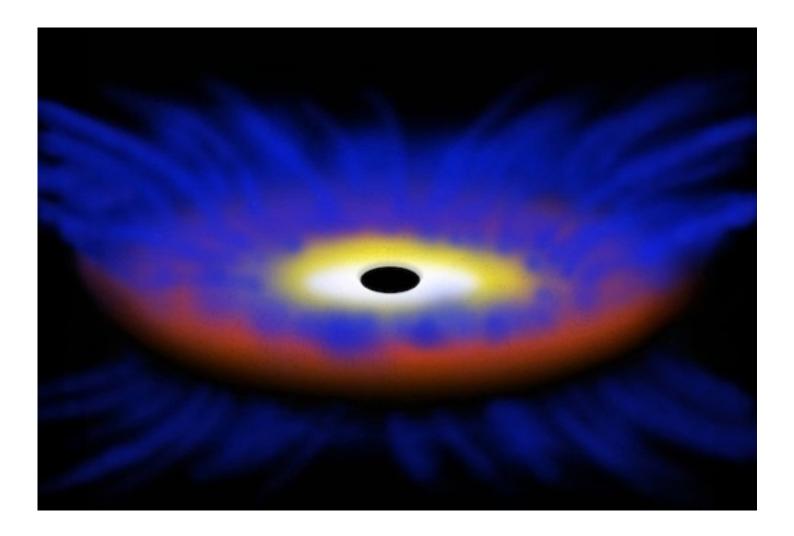
Mike Eracleous (PSU)

Margherita Giustini (SRON)

Cristian Vignali(UofB)

Niel Brandt (PSU)

Cristian Saez (UM)


Massimo Cappi (INAF)

Mauro Dadina (INAF)

Quasar Winds

AGN Winds

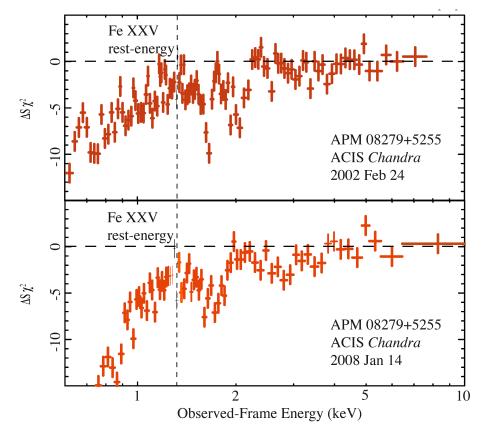
z > 1 AGN with reported relativistic winds over small scales (10-100rg):

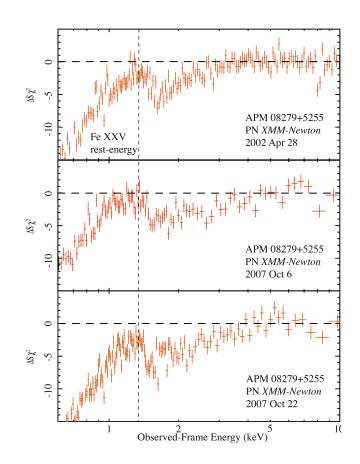
Object	Туре	Z	v/c	Reference
APM 08279+5255	BALQSO	3.91	0.2-0.75	(Chartas et al. 2002, ApJ, 579, 169)
HS1700+6416	NALQSO	2.735	0.12-0.59	(Lanzuisi et al. 2012, A&A, 544, A2)
H 1413+117	BALQSO	2.56	0.23 and 0.67	(Chartas et al. 2007, ApJ, 661, 678)
PG 1115+080	miniBALQSO	1.72	0.1 and 0.4	(Chartas et al. 2003, ApJ, 595, 85)
SDSS J1353+1138	miniBALQSO	1.63	0.43	(Chartas et al. 2016 in prep)
PID352	FRII	1.6	0.05	(Vignali et al. 2015, A&A, 583, A141)
HS0810+2554	NALQSO	1.51	0.1 and 0.4	(Chartas et al. 2016, ApJ, in press)

Observations of ultraluminous infrared galaxies have revealed large-scale molecular outflows traced in OH and CO extending over kpc scales with velocities exceeding ~ 1000 km s⁻¹ and with massive outflow rates (up to ~1200 M_{\odot} yr⁻¹) AGN with reported massive outflows over large scales (~kpc) :

Object	Туре	Ζ	V	Reference
SDSS J1148+5251	QSO	6.4189	1400 km/s	(Maiolino et al. 2012, Cicone et al. 2014)
XID5395	QSO	1.5	1300km/s	(Brusa et al. 2016)
SDSS J1356+1026	QSO	0.123	500km/s	(Sun et al. 2014)

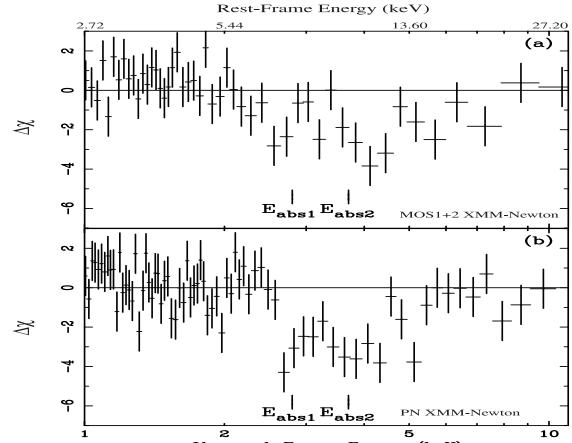
Several Properties of the z > 1 Quasars with Relativistic Winds


Object	z	$\log(M_{\rm BH})$	$L_{\rm Bol}/L_{\rm Edd}$	v_{out}/c	Ņ	$\dot{\mathrm{E}}_{\mathrm{K}}/L_{\mathrm{bol}}$	$\dot{\mathrm{p}}/(L_{bol}/c)$
		(M_{\odot})			${\rm M}_{\odot}~{\rm yr}^{-1}$		
APM08279	3.91	10.	3.6	0.2 - 0.75	220^{+145}_{-150}	$0.4^{+0.3}_{-0.3}$	1.5
HS1700	2.735	10.4	0.63	0.12 – 0.59	4-6	0.01 - 0.18	0.1
H1413	2.55	9.39	0.10	0.23 - 0.67			
PG1115	1.72	8.96	0.12	0.1 - 0.4	15^{+13}_{-10}	$5.3^{+2.5}_{-3.5}$	26
${ m SDSS1353}$	1.63	9.13	0.40	0.43	60^{+50}_{-40}	5^{+4}_{-3}	22
PID352	1.6	8.7	0.16	0.14	$1.7^{+5.1}_{-1.4}$	$0.1\substack{+0.1 \\ -0.07}$	1.3
HS0810	1.51	8.6	0.04	0.1 - 0.4	$3.4^{+2.7}_{-2.1}$	9^{+8}_{-6}	45

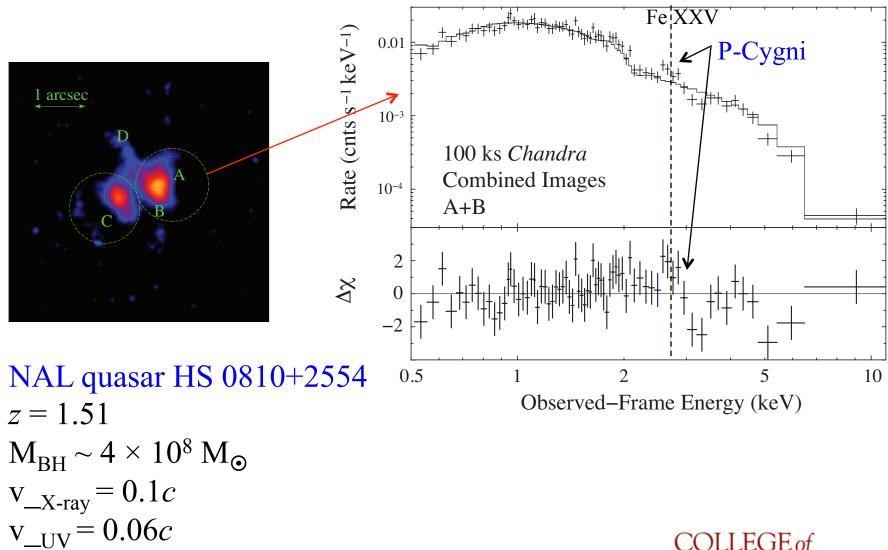


Quasar Outflows Observed in a BAL Quasar

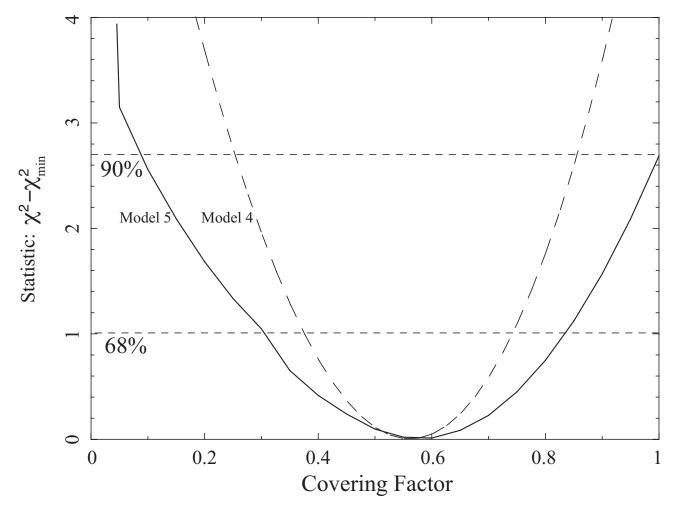
z = 3.91 APM 08279+5255



Quasar Outflows Observed in a mini-BAL Quasar

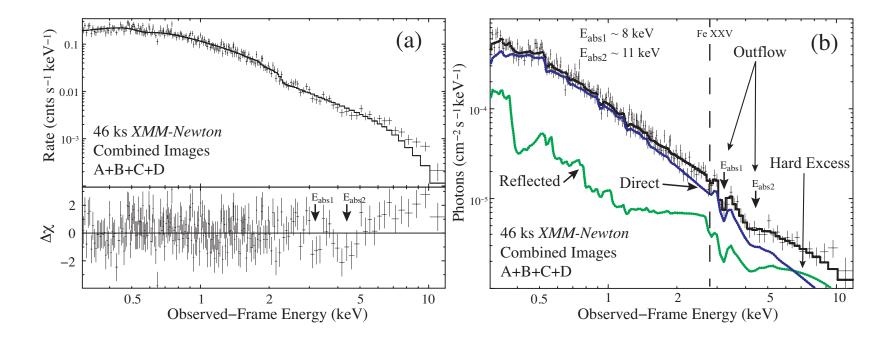

z = 1.72 PG 1115+080

Observed-Frame Energy (keV)



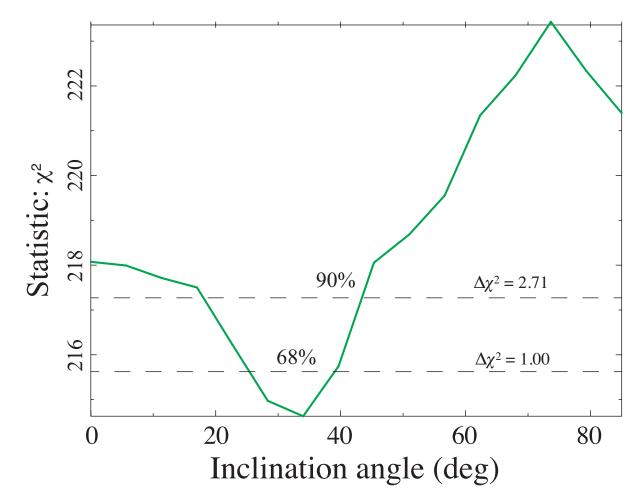
Quasar Outflows Observed in a NAL Quasar

CHARLESTON


Wide-Angle Outflow of HS 0810

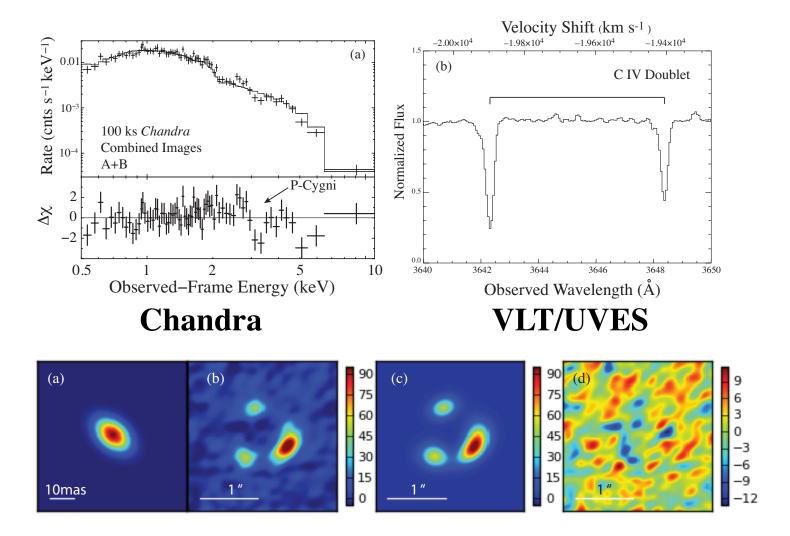
 χ^2 confidence contour of the covering factor of the wind. The best-fit value of the covering factor is $f_{\rm C} = 0.6(-0.2,+0.3)$ (68%)

Relativistic Outflows in NAL Quasar HS 0810



(a) 46 ks XMM-Newton spectrum of all images of HS 0810+2554.

(b) shows the data shown in panel (a) overplotted with the unfolded best-fit model comprised of a photoionizaton (XSTAR) and reflection model (PEXMON).

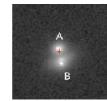

Relativistic Outflows in NAL Quasar HS 0810

Fits to the XMM-Newton spectrum of HS 0810 constrain the inclination angle of the accretion disk. The best-fit value of about $\sim 30^{\circ}$ is consistent with models that posit NALQSOs as objects observed at relative low inclination angles.

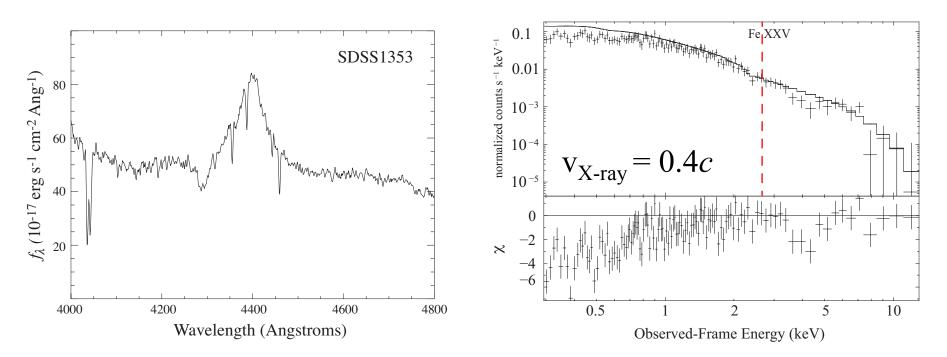
Small scale outflow in HS0810 may be driving a larger scale outflow

8.4GHz VLA (Jackson et al. 2015)

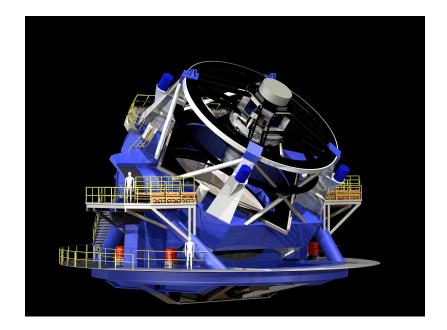
Winds in Lensed mini-BAL Quasars

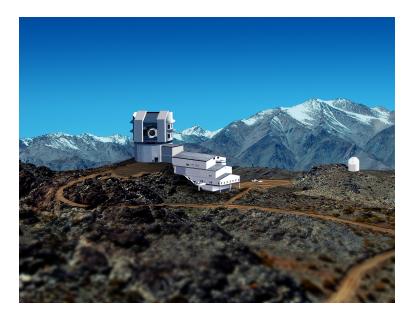

We have recently initiated a mini X-ray survey of gravitationally lensed z = 1.63 - 3.6 SDSS mini-BAL quasars with *XMM-Newton*. The main goals are:

(a) Investigate whether relativistic outflows of X-ray absorbing material are a common property of mini-BAL quasars.


(b) Infer the range of outflow properties in a sample of mini-BAL quasars.

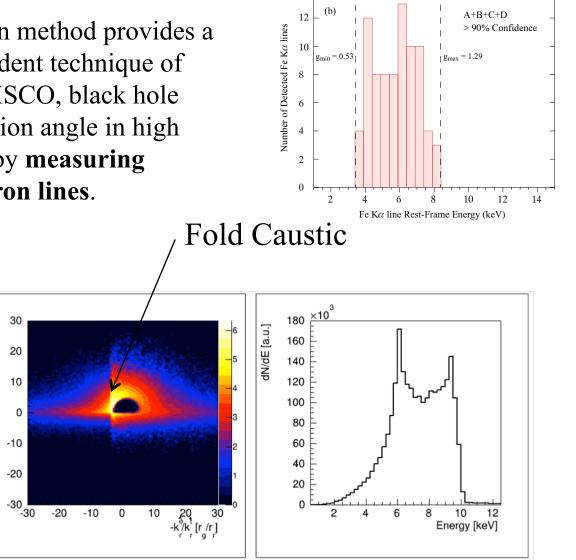
Winds in Lensed mini-BAL Quasar SDSS J1353

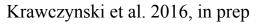



z = 1.63 SDSS J1353

Looking Ahead

The Large Synoptic Survey Telescope(LSST) will discover ~ 4000 gravitationally lensed quasars that will allow:


- Statistical studies of black hole accretion disk sizes as a function of black hole mass
- Studies of the evolution of black hole disk sizes with redshift
- Studies of the evolution of the dark matter fraction of the lens galaxies with redshift
- Studies of the mean stellar mass in cosmologically distant galaxies.



g-distribution method (see poster F13 by Lukas Zalesky)

The g-distribution method provides a new and independent technique of constraining the ISCO, black hole spin, and inclination angle in high redshift quasars by measuring energy shifted iron lines.

k⁶/k^t [r /r]

Looking Ahead

- Increase the sample size of z > 1 quasars with high S/N spectra to infer the frequency of winds in quasars near the peak of AGN activity.
- **Observe more z >1 lensed quasars** as they become available (ie LSST)
- Linking the energetics of small scale relativistic outflows to those of larger scale molecular outflows.
- Search for correlations of outflow properties of z >1 quasars with L_{Bol}/L_{Edd} , M_{BH}, SED
- Compare simulations and observations to better **understand the driving mechanism** of relativistic winds.
- Obtain high-spectral resolution P-Cygni profiles detected in quasar winds to infer their geometry.

