Compton Thick AGN in XMM-COSMOS

G. Lanzuisi

P. Ranalli, I. Georgantopoulos, A. Georgakakis, I. Delvecchio, T. Akylas, S. Berta, A. Comastri, M. Brusa + COSMOS team...

XMM-Newton: The Next Decade

Why bother?

http://www.oabo.inaf.it/~gilli/xrb.html

...see also D. Alexander's talk...

- CT needed to reproduce the XRB
- Mostly from low luminous CT AGN
 2~1

G. Lanzuisi

XMM-Newton: The Next Decade

CT in the local Universe...

Common (>50% of Seyfert-2) in the local Universe

G. Lanzuisi

XMM-Newton: The Next Decade

...and beyond that...

Common (>50% of Seyfert-2) in the local Universe

Difficult to detect in 2-10 keV beyond few tens of Mpc e.g. Ricci+16

XMM-Newton: The Next Decade

Factor 50-100 fainter in 2-10 keV
 w.r.t. unobscured
 (→ undetected or low X-ray counts)

- Complex spectra

G. Lanzuisi

XMM-Newton: The Next Decade

- Factor 50-100 fainter in 2-10 keV
 w.r.t. unobscured
 (→ undetected or low X-ray counts)
- Complex spectra
- With small differences between $N_{\rm H}{<}{\sim}10^{\rm 24}$ and $N_{\rm H}{>}{\sim}10^{\rm 24}$

XMM-Newton: The Next Decade

- Factor 50-100 fainter in 2-10 keV
 w.r.t. unobscured
 (→ undetected or low X-ray counts)
- Complex spectra
- With small differences between N_{μ} <~10²⁴ and N_{μ} >~10²⁴
- plus scattered/thermal emission in the soft band

XMM-Newton: The Next Decade

- Factor 50-100 fainter in 2-10 keV w.r.t. unobscured

(undetected or low V ray counte)

ID210	us	T06	C11	B12	I12	G13
30	heavily		1777.		heavily	
44	unabsorbed	CThick	_	heavily	-	-
48	moderately	_	-	_	_	heavily
64	heavily	—	—	—	heavily	—
66	heavily	-	_		-	secure-CThick
106	moderately	CThick	-	heavily	_	-
114	heavily	-	—	—	heavily	-
144	heavily	CThick	CThick	heavily	heavily	secure-CThick
147	heavily	CThick	CThick	heavily	-	secure-CThick
155	moderately	CThick		heavily	-	<u></u>
180	heavily	-	-	_	heavily	heavily
214	heavily	_	-	-	_	heavily
222	unabsorbed	_	_	_	_	heavily
245	heavily	-	-		heavily	heavily
289	moderately	-	_	-	_	heavily
324	unabsorbed	-Castello'-Mor+13		_	-	secure-CThick

G. Lanzuisi

XMM-Newton: The Next Decade

How many CT in XMM-COSMOS?

~1200 AGN with >30 counts Rich multi-λ coverage Deeper Chandra data to test the selection

10 CT candidates 29 highly obscured but C-thin Lanzuisi et al. 2015 A&A 573, A137

G. Lanzuisi

XMM-Newton: The Next Decade

Pure X-ray selection

- Deeper Chandra data from CCOSMOS-Legacy Civano+16

- More refined models Mytorus, BNTorus....

 \rightarrow 80% detection efficiency

XMM-Newton: The Next Decade

Pure X-ray selection

- Deeper Chandra data from CCOSMOS-Legacy Civano+16

- More refined models Mytorus, BNTorus....

10-6

10-7

10-6

0-7

0.5

1

0.5

Ph/keV/s/cm²

Ph/keV/s/cm²

 \rightarrow 80% detection efficiency

2608 z=0.125

2

2

Energy (keV)

Energy (keV) 54514 z=0.707

5

5

4×10-3×10-3 Probability Density Probability Density 2×10-3 õ 100 1000 10 1000 10 100 N. N_L 0-0 0-60152 z=0 60211 z=0.511 Ph/keV/s/cm² Ph/keV/s/cm² 10-7 10-7 0.5 1 2 Energy (keV) 0.5 1 2 Energy (keV) 5 5 10-6 0-0 60342 z=0.941 54490 z=0.908 Ph/keV/s/cm² Ph/keV/s/cm² 10-7 10-7 0.5 2 5 0.5 5 1 2 1 Energy (keV) Energy (keV)

G. Lanzuisi

XMM-Newton: The Next Decade

Host properties

35-45% of merging/disturbed systems (w.r.t ~15-20% for X-ray selected AGN) see also Kocevski+15, Del Moro+16

G. Lanzuisi

XMM-Newton: The Next Decade

Host properties

G. Lanzuisi

XMM-Newton: The Next Decade

Comparison with XRB models

Number counts consistent with XRB models (e.g. Akylas+12).

http://indra.astro.noa.gr/xrb.html

But:

- highly uncertain CT fraction especially at N_H>10²⁵ cm⁻² e.g. Comastri+15

- highly uncertain refl. Fraction

XMM-Newton: The Next Decade

1st step: Detection

Chandra is more efficient at fain fluxes e.g. Cosmos-Legacy (4.6Ms) has 60-70 CT candidates vs. 10 in XMM-Cosmos (1.5Ms)

2nd step: Charactherization

Deep XMM obs. allow to put real constrain on N_H and refl. fraction As it is possible at z=0 with >10keV data e.g. Ricci+16, Koss+16, Akylas+16

XMM-Newton: The Next Decade

1st step: Detection

Chandra is more efficient at fain fluxes e.g. Cosmos-Legacy (4.6Ms) has 60-70 CT candidates vs. 10 in XMM-Cosmos (1.5Ms)

2nd step: Charactherization

Deep XMM obs. allow to put real constrain on N_H and refl. fraction As it is possible at z=0 with >10keV data e.g. Ricci+16, Koss+16, Akylas+16

XMM-Newton: The Next Decade

1st step: Detection

Chandra is more efficient at fain fluxes e.g. Cosmos-Legacy (4.6Ms) has 60-70 CT candidates vs. 10 in XMM-Cosmos (1.5Ms)

2nd step: Charactherization

Deep XMM obs. allow to put real constrain on N_H and refl. fraction As it is possible at z=0 with >10keV data e.g. Ricci+16, Koss+16, Akylas+16

G. Lanzuisi

XMM-Newton: The Next Decade

1st step: Detection

Chandra is more efficient at fain fluxes e.g. Cosmos-Legacy (4.6Ms) has 60-70 CT candidates vs. 10 in XMM-Cosmos (1.5Ms)

2nd step: Charactherization

Deep XMM obs. allow to put real constrain on N_H and refl. fraction As it is possible at z=0 with >10keV data e.g. Ricci+16, Koss+16, Akylas+16

Covering the full COSMOS (or SXDS, or AEGIS) with 0.5 Ms average, effective expo would take ~5 Ms/deg^2 and the number of CT at high z would still be small...

Targeting 10-20 good (X-Luminous) candidates (from XXL, Stripe82 etc..) with deep exposures would build the CT reference sample at high-z!

G. Lanzuisi

XMM-Newton: The Next Decade