

XMM-Newton Workshop 2016: The Next Decade ESA/ESAC 2016 May 9–11

Detailed studies of shock-cloud interaction toward the young supernova remnants

Hidetoshi SANO & Yasuo FUKUI (Institute for Advanced Research, Nagoya University)

Young supernova remnants & Interstellar medium 2/16

Young SNRs are though to be primary accelerators of Galactic CRs

- □ Fast shock speed ~3,000–10,000 km s⁻¹ (e.g., Uchiyama+07; Winkler+14)
- □ Bright in TeV gamma-rays and synchrotron X-rays (e.g., Aharonian+07)
- □ Age- or escape-limited phase (e.g., Ohira+12)

Interstellar gas

- □ Molecular clouds: dense neutral gas of H₂ (2.6 mm CO)
 - \rightarrow density ~10³ cm⁻³ or higher, T_k ~10–20 K
- □ Atomic clouds: diffuse neutral gas of H (21 cm Hı)
 - \rightarrow density ~1–100 cm⁻³, T_k ~30–100 K

Dynamical interaction between the SNR' shocks and interstellar gas plays an essential role in producing the high-energy radiation & CRs

Sano+10, ApJ, 724, 59 Sano+13, ApJ, 778, 59

RX J1713.7-3946

Age: ~1,600 yr
Distance: ~1 kpc
Size: ~19 pc
Core-collapse SNR
Bright in TeV γ- & non-thermal X-rays
CO cavity + cold HI

However, it is not known how the X-ray local peaks are formed?

Sano+10, ApJ, 724, 59 Sano+13, ApJ, 778, 59

4/16

RX J1713.7-3946

- □ Age: ~1,600 yr
- □ Distance: ~1 kpc
- □ Size: ~19 pc
- □ Core-collapse SNR
- □ Bright in TeV γ- &
 - non-thermal X-rays
- \Box CO cavity + cold HI

Synchrotron X-rays are well spatially correlated with CO in a pc scale

5/16

Synchrotron X-rays are enhanced around CO clumps in a sub-pc scale

Sano+10, ApJ, 724, 59 Sano+13, ApJ, 778, 59

RX J1713.7-3946

Age: ~1,600 yr
Distance: ~1 kpc
Size: ~19 pc
Core-collapse SNR
Bright in TeV γ- & non-thermal X-rays
CO cavity + cold HI

Synchrotron X-rays are enhanced around the cold HI clump

X-ray intensities are well correlated with the total interacting gas masses

7/16

Shock-cloud interaction in RX J0852.0-4622

RX J0852.0-4622 (Vela Jr.)

8/16

- □ Age: ~2,000 yr
- □ Distance: ~750 pc

□ Size: ~25 pc

- □ Core-collapse SNR
- Bright in non-thermal

X-rays & TeV γ-rays

 \Box HI/CO wind bubble

Fukui+2016 in prep. Sano+2016 in prep.

Shock-cloud interaction in RX J0852.0-4622

RX J0852.0-4622 (Vela Jr.)

9/16

- □ Age: ~2,000 yr
- □ Distance: ~750 pc
- □ Size: ~25 pc
- Core-collapse SNR
- Bright in non-thermal
 - X-rays & TeV γ-rays
- \Box HI/CO wind bubble

Fukui+2016 in prep. Sano+2016 in prep.

Shock-cloud interaction in N132D

10/16

Magellanic SNR N132D

Sano+15a, ASPC, 499, 257

Age: ~3,150 yr
 Core-collapse
 Associated with the GMC?
 Size: ~25 pc
 Bright in thermal/non-thermal X-ray & TeV γ-ray

Shock-cloud Interaction: schematic view

11/16

Shock-cloud Interaction: MHD simulation

Inoue+09; 12

- B field are amplified around the CO-like clump
 Maximum B field strength reaches ~1 mG
 - (Averaged *B* field strength in down stream of $\sim 100 \ \mu G$)

Interpretation of the synchrotron X-ray spectra

13/16

Photon index map of RXJ1713 (Contours: total gas)

Photon indexes became small (< 2.4) toward both gas rich/poor regions

Interpretation of the synchrotron X-ray spectra

14/16

Photon index map of RXJ1713 (Contours: total gas)

Gas rich/clumpy region small $v_{\rm sh}$ & $\eta \sim 1 \rightarrow$ large ε_0

Gas poor/diffuse region large $v_{\rm sh}$ & $\eta > 1 \rightarrow$ large ε_0

Sano+15b, ApJ, 799, 175

Interstellar gas distribution may control the X-ray spectra!!

Comparative study using XMM-newton archival data 15/16

RCW 86 (Fukui & Sano)

Detailed comparative study between the X-ray and gas thermal X-ray flux ∝ gas density [Poster → H03]

■ <u>30 Dor C (Babazaki+)</u>

Detailed study of X-ray spectra analysis

 $[Poster \rightarrow H01]$

16/16

Young SNRs & interstellar gas

- \Box Fast shocks & bright in the TeV γ -rays and synchrotron X-rays
- \Box Molecular cloud (> 1000 cm⁻³), Atomic cloud (~1–100 cm⁻³)

Shock-cloud interaction in the young SNR RXJ1713

- □ Enhancement of the turbulence & *B* field around the gas clumps
- □ Gas distribution may control the synchrotron X-ray spectra

Shock-cloud interaction toward the Galactic/Magellanic SNRs

- □ RXJ0852: X-rays are enhanced around the CO clumps & HI wall
- □ N132D: CO cavity-like structure along with the X-ray shell

Interstellar gas $(H + H_2)$ interacting with the SNR is important to understand the high-energy radiation & the origin of CR