Towards combined analysis of the most distant massive galaxy clusters with XMM and Chandra

Iacopo Bartalucci
CEA SACLAY SERVICE D’ASTROPHYSIQUE
With: Monique Arnaud, Jessica Democles, Gabriel Pratt, Remco van der Burg

XMM-Newton: the next decade
Why this region?

High z: comparison with local sample

- High z: comparison with local sample
- High Mass: N(M) sensitive to high mass objects
- Gravitationally dominated clusters

-cosmology
- evolution of gravitational processes

Our sample

Chandra and XMM combination

Results and future prospects

Our sample

M_{500}^{yz} [10^{14} M_\odot] vs Redshift

- ESZ/PSZ1/PSZ2
- SPT

XMM LP (PI M. Arnaud) complemented with Chandra LP (PI P. Mazzotta) and archive
Observational challenges

X-ray observations of high Z clusters suffer from:

Cosmological dimming

$$S_x \propto (1 + z)^{-4}$$

Chandra

SPT-CLJ2146-4632 @z~1

Chandra

MS1455.0+223 @z~0.26
Observational challenges

X-ray observations of high Z clusters suffer from:

Cosmological dimming

\[S_x \propto (1 + z)^{-4} \]

\(\text{Chandra} \)

SPT-CLJ2146-4632 @z~1

\(\text{Chandra} \)

MS1455.0+223 @z~0.26

\(\text{XMM-Newton} \)

bigger effective area...

...but AGN confusion problem
Chandra and XMM combination: imaging

What do we gain for the imaging?

We gain:

- Information on large scale structure
- Presence of substructures
- Characterization of the core, choose of the center
Chandra and XMM combination: imaging

What do we gain for the imaging?
What do we gain for the imaging?

XMM-Newton and Chandra combination is fundamental to investigate morphological status and XMM PSF is sufficient for \(<w> \).
Chandra and XMM combination: 1D

With Chandra we probe the core @ R<0.1R500

With XMM-Newton we probe the outskirts @ R~R500
Profiles are consistent! No PSF issues so…
We combine the profiles fitting simultaneously a parametric profile

Vikhlinin et al 2006
We combine the profiles fitting simultaneously a parametric profile.

Vikhlinin et al. 2006
We combine the profiles fitting simultaneously a parametric profile

Combination of Chandra and XMM-Newton is fundamental to efficiently probe the core and the outskirts

We combine the profiles fitting simultaneously a parametric profile
Hints of evolution? Taking as reference the REXCESS sample

No clear signs of evolution for n_e. Deviations due to dynamical status
Hints of evolution? Taking as reference the REXCESS sample

Entropy profiles are, on average, lower than local sample at $R \sim R_{500}$

Results and future prospects

Same behavior in the K-M plane at high R
Future prospects

We presented a new method to efficiently analyse high redshift clusters. Science coming in! BUT we need to populate the sample and apply the same strategy to spectroscopic analysis.

Combination of XMM-Newton deep observations and shorter Chandra brings fundamental information...

...working on combining also spectroscopic information, i.e. temperature profiles!

Martino et al (2014)
Thank you!