The Hot Gaseous Halos of Spiral Galaxies

Joel Bregman, Matthew Miller, Edmund Hodges-Kluck, Michael Anderson, Xinyu Dai

Hot Galaxy Halos and Missing Baryons

Rich clusters have nearly all their baryons. Galaxies become increasingly baryon-poor. "Average" spiral (like M33) is missing 90% of baryons

Baryons Aren't Really Missing

- Matter must be conserved
- Baryons are just hard to see
- Where are they?
- Models: Hot dilute gas in galaxy halos and surrounding galaxies
- Why should we care?
- It's all about galaxy formation and the formation of structure
 - Formation of structures from Dark Matter is (more or less) a solved problem
 - Baryons are different because of cooling and heating
 - Heating comes from accretion and feedback
- Gas should have T ~ T_{virial} \rightarrow X-rays
- Prediction: lower mass galaxies don't have a hot halo

Keres et al. 2008

The Milky Way

- The best data for study
- Hot Halo: mass, cooling rate, metallicity
- Rotation of the Hot Halo
- Interaction of the Fermi Bubbles with the Hot Halo

Model for the Milky Way Nuza et al. 2014

Observations Samples

- Archival XMM data projects have produced all-sky samples of line strengths
 - Absorption lines: 26 AGN, 3 X-ray binaries
 - Emission lines: 683 sight lines from Henley & Shelton 12

MW Halo Masses (With Optical Depth Correction)

 $\beta \approx \frac{1}{2}$ $n \propto r^{-3/2}$ Gas detected to 50 kpc Extrapolation beyond 50 kpc

This is not the missing baryons $(1-3x10^{11} M_{\odot})$

Need to extrapolate gas to $2-3R_{virial}$ to account for missing baryons.

Cooling time of the hot halo:

"Cooling flow" within 40 kpc

Cooling rate is about 0.2 Msun/yr (Z = 0.3 Zsun) (if cooling flows occur)

Hot Gas Kinematic Models

- Modeling absorption line shapes for bulk velocity flows
 - $v_{\oplus}(R)$ = flat rotation curve
 - $v_{r/z}(r,z)$ = constant accretion or outflow

Rotation constrained by objects at various Galactic longitudes (but not high b) Inflow/outflow constrained by looking up/down (high/low Galactic latitude)

Line of Sight Velocity Effects

• Line shapes and centroids encode information on the velocity structure

l,b = 90°, 0° Red = stationary Blue = corotating

Broad line shapes similar to HI profiles for gas in the disk.

XMM RGS was not expected to have this precision but it does!

Observed Line Centroids

- 37 OVII absorption line centroids from Hodges-Kluck+ 16
- Corotating model is a better fit to the data than a stationary profile
 - Best-fit model lags behind the disk with v_{\odot} = 183 ± 41 km s⁻¹

The Interaction of the Fermi Bubbles with the Hot Halo

- Elevated OVIII/OVII ration near Fermi Bubbles -> shocked gas
- Modeling the emission lines shows
 - thermal gas density to be $\approx 10^{-3}$ cm⁻³ and log(T) = 6.6-6.7
 - v_{exp} = 490 km s⁻¹
 - Ė = 2.3 x 10⁴² erg s⁻¹
 - t = 4.3 Myr
- FB origin consistent with a Sgr A* accretion event
- Not consistent with star formation origin

Hot Gas Around Spiral Galaxies

Spirals: most likely a SN-driven galactic fountain + hot mode accretion

Global Formation Mechanisms

Accretion Shock

- Gas shock-heats to T_{vir} at r_{vir} as it accretes onto the dark matter halo
- Expect spherical power law structure at $\approx 2 \times 10^6 \text{ K}$
- Supernovae-driven 'galactic fountain'
 - Supernovae heat the ISM and break out of the disk
 - Expect an exponential disk structure confined within |z| < 10 kpc

Halos Around Two Massive Galaxies NGC 1961 and UGC 12591

UGC 12591: Early-type spiral (left) NGC 1961: Later-type spiral (right)

Stellar Mass is 6-8x the Milky Way

Summary from Anderson et al. (2015); also NGC 720 (Humphreys), NGC 266 (Bogdan); UGC 12591 (Dai et al. 2015) Metallicity of 0.1 – 0.5 Solar Entropy increase with radius

Density and Mass Summary

- General results
 - $\beta = \frac{1}{2}$; n ~ r^{-3/2}
 - 20-30% of missing baryons within R_{virial}
 - Gas mass comparable to stellar mass
 - Still missing half of the baryons (or more)
- Could density law be flatter (Kauffman et al. 2008, Feldmann et al. 2012)?
 - No (inconsistent with observed S_x, T_x)
 - T also gives n ~ r^{-3/2}

Summary and Conclusions

(in case you concentration is compromised after the dinner last night)

- Extended hot halos exist around spiral galaxies
 - To at least 50 kpc and probably to $\rm R_{200}$
 - Comparable to (less than) stellar mass within R₂₀₀
 - Hot mode accretion of 0.1-0.3 M_{\odot} /yr (less than star formation rate)
 - Does not account for missing baryons unless extended to 2-3R₂₀₀
 - Metallicity of ~0.3 Solar
 - Variation in properties unknown due to small samples
- Milky Way hot halo rotates
 - About 180 km s⁻¹ (60 km/s slower than the disk); could use more objects
 - Consistent with theory, but few predictions
- Fermi Bubbles shock hot halo (v = 500 km/s); AGN origin