X-ray cycles and magnetic activity of solar-like stars XMM-Newton meets eROSITA

J. Robrade & J.H.M.M. Schmitt

Hamburger Sternwarte, University of Hamburg, Germany, e-mail: jrobrade@hs.uni-hamburg.de

Abstract: Since the beginning of its operation XMM-Newton carries out a monitoring program to study X-ray cycles, including the nearby stellar systems α Centauri and 61 Cygni. In all studied target stars the X-ray emission varies overall smoothly on timescales of years, indicating that coronal cycles are common in weakly active solar-type stars. The derived global X-ray properties and cyclic phenomena are in line with those observed from the Sun. As an outlook and complementing ongoing pointed observation, future perspectives of stellar X-ray studies with the eROSITA all-sky survey are presented.

The eROSITA all-sky survey (eRASS)

- eROSITA/SRG (D/Ru) launch end 2017, L2 halo orbit
- 7 co-aligned X-ray telescopes + CCDs, FOV 1.03°ø
- HEW 15/28", eff. area@1keV 2400/1400 cm² (on-axis/survey)
- 4 yr all-sky survey, 0.3 10.0 keV energy range
- lim. $F_{\rm X} \approx 1 \times 10^{-14} \,\mathrm{erg}\,\mathrm{cm}^{-2}\,\mathrm{s}^{-1}$ (point sources)

eROSITA and Stars

- $\bullet \sim 0.7~million$ X-ray stars (Besancon model, Guillout+ 199
- order of magnitude sensitivity increase to RASS
- stellar sample well classified by Gaia
- most suited to study SFRs, moving groups, active stars...

X-ray horizon of the eRASS ($L_{\rm X} \gtrsim 1 \times 10^{24} \times d^2$ (pc) [erg/s])

Survey the solar neighborhood

virtually complete census of young stellar populations up to 100 pc
X-ray survey of 'rare objects' like young BDs, VLM, Ap/Bp and HAeBe stars
RECONS 10 pc sample: > 300 stars (4-6-20-44-248, A-F-G-K-M)

eRASS spectra of stars, 2 ks exposure (3-6 cts s⁻¹, $F_X \approx 5 - 10 \times 10^{-12} \text{ erg cm}^{-2} \text{ s}^{-1}$)

Spectra and light curves

- detailed study of many thousands of stars
- 8 sky-scans (0.5 yr) with 6 scans/day (40 s each)
- variable X-ray activity, transients, flares, cycles
 medium resolution X-ray spectra
- coronal properties and HR classification

JR acknowledges supported from DLR under 50QR0803.

Alpha Centauri A/B (XMM-Newton, 2003/2005)

Coronal activity cycles in nearby G and K dwarfs

X-ray observations of the binaries 61 Cyg A/B and α Cen A/B show significant long-term variability in all component stars; full activity cycles are covered in 61 Cyg A and α Cen B. The observed X-ray cycles differ in amplitude and period, yet spectral changes of the coronal X-ray emission over the cycles are solar-like in all studied targets.

61 Cyg A/B (K5V + K7V)

- monitored since May 2002, well resolved
- chromospheric cycles of 7.3 yr (A), 11.7 yr (B) (Baliunas et al. (1995), Hall et al. (2007)
- 61 Cyg A
 - smooth and persistent coronal activity cycle
 cycle quite stable over ~ 40 years (X-ray + Ca II HK)
 X-rays and Ca II HK in phase
- 61 Cyg B
 - more irregular chromospheric cycle, long-term variable
 coronal cycle indistinct/non-sinusoidal

Global stellar+coronal properties

- stellar systems are old (6 \pm 1 Gyr) and all components rotate slowly ($P_{\rm rot} \approx 30 40$ d)
- weakly to moderately active stars, $\log L_X/L_{bol} \lesssim -5.5$ • coronae dominated by cool plasma at $T_X \approx 1.0 - 2.5$ MK
- presence of 6–8 MK plasma around activity maxima

Par.	α Cen A	α Cen B	61 Cyg A	61 Cyg B	Sun
sp. type	G2V	K1V	K5V	K7V	G2V
Pact (yr)	$\sim 15?$	8-9	7	≥12?	11
log L _{Xmax}	26.8	27.6	27.3	27.2	27.8
log L _{Xmin}	≈26	26.6	26.8	26.7	26.7
$\log L_{\rm X}/L_{\rm bol}$	-7.0	-6.2	-5.6	-5.5	-6.1
Ampl.	$\sim 10?$	6-9	3	3?	12

Stellar X-ray cycle properties, 0.2 - 2.0 keV, quasi-quiescent state from EPIC, log L_X in [erg s⁻¹]. Solar data: Judge et al. (2003), scaled to 0.2 - 2.0 keV; Ayes (2014) gives log $L_X \sim 26.3 - 27.3$.

Corresponding publications: Robrade et al. (2005), Hempelmann et al. (2006), Robrade et al. (2012).

α Cen A/B (G2V + K1V)

- monitored since April 2003, mod./poorly resolved
- X-ray detected activity cycles (+ FUV/UV data)
- Chandra HRC-I joined in 2005 (Ayres 2009, 2014)
- α Cen A
- strong decline of L_X in about two years
 extended minimum over 10 years, very inactive phase
 clear re-detection by XMM in 2016 (at 4" sep.)
 no maximum covered, likely period ≥ 15 yr
- no maximum cove
 α Cen B
- cyclic activity, period ~ 8 9 yr, MWL: 8.8 yr (de Warf et al., 2010) • activity maximum in 2012, brightest X-ray observation within 30 years ($L_X \approx 4 \times 10^{27} \text{ erg s}^{-1}$)
- coronal cycle similar to solar one
- Characteristics of cyclic coronae
- phenomenology independent of spectral type or activity level
 strong changes of emission measure over X-ray cycle
 variability is 'solar-like' in all studied cases:
 - variability more dominant in respectively hotter plasma
 similar coronal structures with variable filling factors
 coronal cycle properties are energy band dependent

	(61 Cyg	A	α Cen B		
kT (keV)	EM _{max}	EM _{min}	EM _{ratio}	EM _{max}	EM _{min}	EM _{ratio}
~ 0.1	64%	78%	1.6	67%	83%	3.8
~ 0.3	28%	20%	2.8	31%	17%	8.6
~ 0.7	8%	1%	10.	2%	-	$\gtrsim 15$

Typical coronal emission measure distribution at max. and min. activity, EM_{max/min} are the relative contributions, EM_{ratio} of absolute values.