# The Wide-Area X-ray Survey in the Legacy Stripe 82 Field

#### Stephanie LaMassa

Meg Urry, Eilat Glikman, Gordon Richards, Nico Cappelluti, Andrea Comastri, Hans Boehringer, Francesca Civano, + *Stripe82X Team* 

# Goals of Stripe 82X

- Uncover how obscured high-L AGN evolve
- Disentangle signatures of black hole growth & star formation
- Study large scale environments hosting AGN
- Search for direct collapse black holes

# Importance of Wide Area Surveys

- Only way to discover rare objects, e.g. high-L & highz AGN
  - Signal when majority of mass accreted on SMBHs occurs Hopkins & Hernquist 2009, Treister+ 2012
  - Key players in galaxy evolution Glikman+ 2012,2013; Banerji+ 2013, 2015; Stern+ 2014; Assef+ 2015
- Large angular scales needed to measure unresolved
  X-ray emission: signatures of z > 6 SMBHs

#### SDSS Stripe 82 Legacy Field 300 deg<sup>2</sup>

High level of spectroscopic completeness
 30% – SDSS, 2SLAQ, WiggleZ, DEEP2, PRIMUS, HETDEX
 >50% – targeted follow-up eBOSS, WIYN, Palomar, Keck

• Tons of  $\lambda\lambda\lambda$  coverage ACT 300 deg<sup>2</sup> Radio 300 deg<sup>2</sup> Ultraviolet 300 deg<sup>2</sup> Deep optical ( $r \sim 26$ ) 300 deg<sup>2</sup> NIR (UKIDSS & VHS) 300 deg<sup>2</sup> Spitzer 143 deg<sup>2</sup> Herschel 112 deg<sup>2</sup>

- archival *Chandra* 7.4 deg<sup>2</sup>
- + archival XMM-Newton 6.0 deg<sup>2</sup>
- + AO10 XMM-Newton 4.6 deg<sup>2</sup>
- + AO13 XMM-Newton 15.6 deg<sup>2</sup>









## Stripe 82 X-ray Survey Summary

| Survey             | # of Sources | Area      |
|--------------------|--------------|-----------|
|                    |              | $(deg^2)$ |
| Archival Chandra   | 1146         | 7.4       |
| Archival XMM       | 1607         | 6.0       |
| $XMM \ AO10$       | 751          | 4.6       |
| $XMM 	extbf{AO13}$ | 2862         | 15.6      |
| Total              | 6181         | 31.3      |
|                    |              |           |

LaMassa+ 2016a

### λλλ Counterparts to S82X Sources via Maximum Likelihood Estimator

|            | Survey                                | Number     |       |
|------------|---------------------------------------|------------|-------|
| 81%        | Optical (SDSS)                        | 5009       |       |
| <b>65%</b> | $\mathbf{MIR} ( \mathit{WISE} )$      | 4006       |       |
| 72%        | $\mathbf{NIR} (\mathrm{UKIDSS})$      | 3643       |       |
|            | $\mathbf{NIR}$ (VHS)                  | 4093       |       |
|            | $\textbf{FIR} \; (\textit{Herschel})$ | 133        |       |
| 17%        | $\mathbf{UV}(\mathit{GALEX})$         | 1080       |       |
| 4%         | $\textbf{Radio} \; (FIRST)$           | <b>232</b> |       |
| 30%        | Redshifts                             | 1841       | LaMas |

LaMassa+ 2016a

#### Discover missing links in SMBH growth

- Explore color diagnostics to hone target selection for future missions: *R-W1 LaMassa+ 2016b* 
  - Available over most of sky (SDSS, Pan-STARRS, WISE)
  - -R-W1 > 4 recovers obscured AGN z > 0.5
- Follow-up obscured AGN candidates LaMassa+ in prep
  - Keck NIRSPEC (2013-2015), Palomar TSpec
    (2014-2015), Gemini GNIRS (2015)

#### **Unveiling Hidden Black Hole Growth**

LaMassa+ in prep



# Summary

- Address gap in census of SMBH growth with Stripe 82X
   31.3 deg<sup>2</sup>: 6186 X-ray sources LaMassa+ 13b,c,16a
- Upcoming science highlights
  - photo-z catalog Ananna+ in prep
  - SED analysis Ananna+ in prep
  - Understanding AGN triggering via clustering Cappelluti+ in prep
  - Search for signatures of z > 6 SMBHs Cappelluti+ in prep
- Increase area to 100 deg<sup>2</sup>
  - -z > 3, L<sub>x</sub> > 10<sup>45</sup> AGN/galaxy co-evolution
  - best constraints on black holes in the early Universe until Athena