
MagEX

MagEX is a compact (< 1m tall), low mass (< 20-40 kg), X-ray telescope that can be located on the lunar surface. Collaboration: NASA/GSFC, University of Leicester, University of Kansas

Science Goals of MagEX

First global study of the dynamical interaction of the solar wind with the Earth's magnetosheath and the lunar atmosphere via soft X-ray emission from the solar wind charge exchange (SWCX) process

SWCX Mechanism: $\mathbf{A^{q+}} + \mathbf{B} \rightarrow \mathbf{A^{(q-1)+*}} + \mathbf{B^+}$ Heavy solar wind ion in collision with neutral target atom or molecule $A^{(q-1)+*} \rightarrow A^{(q-1)+} + hv$

Why locate the experiment on the MOON?

• Geometry: The magnetosheath scale size is ~10-20 $\rm R_{E}$ and the Earth-Moon distance is ~ 60 $\rm R_{E}$. This ratio is a good match to X-ray ssing optics.

· The experiment can simultaneously study the interaction of the solar wind and the lunar atmosphere

· The Moon presents the same face to the Earth throughout its orbit The period when the telescope is in lunar night (~ 14 days) is the optimum time to observe the magnetosheath, and the temperature of the environment is most suitable for operating the instrument.

• The Moon provides at least 2π shielding to damaging high energy cosmic rays which degrade the performance of X-ray silicon detectors in space.

MagEX will be able to observe the magnetosheath continuously for a whole lunar night (14 days) as the Moon orbits the Earth.

Steve Sembay, Andy Read, Jenny Carter, George Fraser university of Leicester http://www.src.le.ac.uk/projects/magex/

Telescope Baseline Configuration:

Imaging capability

- FOV ~ 20-30 degrees
- Angular Resolution ~ 1.5 arcminutes
- Detector pixel size ~ 200 microns
- Soft X-ray response (0.2 1.5 keV) ~50 eV FWHM resolution @ 600 eV
- Large Area Detector
- "Moderate" timing capability

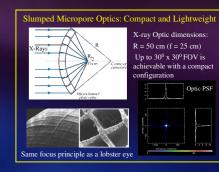
Leicester University's hardware contribution to the collaboration

· Micropore X-ray optics to provide imaging capability; already in

development for other projects (e.g. MIXS on BepiColumbo) •CCD detectors for the focal plane detector

Mass, Power and Size constraints for a lunar surface experiment (based on Apollo experience):

Maximum Mass < 40 kg


Mass < 40 kg (self-contained power system, i.e. solar cells + battery) Mass < 20 kg (external PSU common to multiple experiments)

Maximum Power < 70 W

Power < 70W if actively cooled with Thermal Electric Cooler (TEC) Power < 20-30W if passively cooled and operated during lunar night

Size < 1m3, which means we must use a compact optical system for imaging capability.

Experiment has to be physically compact

A 3-D model of MagEX. The grid structure of the slumped micropore optic can be seen below the open door of the instrument. The focal plane detector is situated beneath the optic.

MagEX Simulation

'Storm' conditions
Typical diffuse sky and detector background
Micropore optic
0.2-2.0 keV FOV 20x20 deg
Pixel size 10 arcm

• Longest exposures represent stacking of data at similar sun-moon-earth angles an similar solar conditions