Chandra Spectroscopy of the Hot DA White Dwarf LB1919 and the PG1159 Star PG1520+525

J. Adamczak,¹ K. Werner,¹ T. Rauch,¹ J. J. Drake,² S. Schuh ³

¹Institut für Astronomie und Astrophysik, Universität Tübingen ²Harvard-Smithsonian Center for Astrophysics ³Institut für Astrophysik, Universität Göttingen

30th of May 2008

イロト イポト イラト イラト

- Two major categories:
 - Hydrogen-rich DA stars (Balmer lines)
 - Helium rich DB (Hel) and DO (Hell) stars

Figure: Cut through interior of a typical white dwarf (Napiwotzki).

Jens Adamczak Chandra Spectroscopy of the Hot DA White Dwarf LB1919 and the PG1159 Star PG1520+525

< 日 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- \bullet DAs with ${\it T}_{\rm eff} > 30\,000{\rm K}$ emit thermal soft X-ray radiation
- ROSAT all sky survey: < 200, expected > 5000
- \Rightarrow additional absorbers present (iron, nickel)
- Radiative levitation
- $\bullet\,$ Metal abundances increase with increasing $\,{\cal T}_{\rm eff}$
- ullet \Rightarrow detection of only a few DAs with $T_{
 m eff}$ > 60 000K

イロト イポト イヨト イヨト 三日

- LB1919 one of the hottest DAs known ($T_{
 m eff}=69\,000{
 m K}$)
- Metal composition unknown

Figure: EUVE spectra and stratified models (Werner et al., 2006)

• Metallicity of fainter DAs determined relative to G191-B2B ($T_{\rm eff}=56\,000{\rm K}$)

Jens Adamczak Chandra Spectroscopy of the Hot DA White Dwarf LB1919 and the PG1159 Star PG1520+525

- 4 同 ト 4 目 ト 4 目

- Either: Assumed G191-B2B abundance pattern wrong
- Or: Different stratification than predicted by pure radiative levitation
- 4 mechanisms possible

<ロ> <同> <同> < 回> < 回>

- Either: Assumed G191-B2B abundance pattern wrong
- Or: Different stratification than predicted by pure radiative levitation
- 4 mechanisms possible

<ロ> <同> <同> < 回> < 回>

- Either: Assumed G191-B2B abundance pattern wrong
- Or: Different stratification than predicted by pure radiative levitation
- 4 mechanisms possible
 - Mass-loss
 - Accretion from ISM

<ロ> <同> <同> < 回> < 回>

- Either: Assumed G191-B2B abundance pattern wrong
- Or: Different stratification than predicted by pure radiative levitation
- 4 mechanisms possible
 - Mass-loss
 - Accretion from ISM
 - Onvection

イロト イポト イヨト イヨト

- Either: Assumed G191-B2B abundance pattern wrong
- Or: Different stratification than predicted by pure radiative levitation
- 4 mechanisms possible
 - Mass-loss
 - Accretion from ISM
 - Convection
 - Mixing through rotation

イロト イポト イヨト イヨト

=

- Either: Assumed G191-B2B abundance pattern wrong
- Or: Different stratification than predicted by pure radiative levitation
- 4 mechanisms possible
 - Mass-loss
 - Accretion from ISM
 - Onvection
 - Mixing through rotation
- Currently no explanation for very low metallicity in LB1919 and similiar DAs

(日) (同) (ヨ) (ヨ)

• Chandra spectroscopy of LB1919 with the Low Energy Transmission Grating (LETG/HRC-S)

Figure: Chandra spectrum of LB1919, taken on Feb. 02-03, 2006. Integration time: 111 ksec (Werner et al., 2006)

• Final stage: transition from giant to WD configuration

Figure: Evolutionary track for a $2M_{\odot}$ star (Werner & Herwig, 2006)

Jens Adamczak Chandra Spectroscopy of the Hot DA White Dwarf LB1919 and the PG1159 Star PG1520+525

イロト イポト イヨト イヨト

Э

30th of May 2008 PG1520+525

- H-rich envelope and He-rich layer reduced to $10^{-4}M_{\odot}$ and $10^{-2}M_{\odot} \rightarrow$ shell burning stops
- Chemical surface composition still H-rich

Jens Adamczak Chandra Spectroscopy of the Hot DA White Dwarf LB1919 and the PG1159 Star PG1520+525

30th of May 2008 PG1520+525

- 25 % post-AGB stars in central star phase H-poor. Do not fit in evolutionary scenario
- Spectral analysis (Werner et al., 1991): Wolf-Rayet-CSPN (mass-loss rate $\dot{M} < 10^{-8} M_{\odot} \mathrm{yr}^{-1}) \rightarrow$ PG1159 stars PG1159 ($T_{\mathrm{eff}} = 200\,000\mathrm{K}, \log \mathrm{L/L_{\odot}} = 4$) \rightarrow non-DA WDs ($T_{\mathrm{eff}} = 70\,000\mathrm{K}, \log \mathrm{L/L_{\odot}} = 1$)
- Typical composition PG1159: He=30%, C=50%, O=20%
- Schönberner (1983): Origin late He-flash

イロト イポト イヨト イヨト

• Post-AGB He-shell flash initiates born-again evolution. star is reborn as a red giant

Figure: Evolutionary track for a $2M_{\odot}$ star (Werner & Herwig, 2006)

<ロ > < 同 > < 同 > < 三 > <

Э

- Post-AGB He-shell flash initiates born-again evolution. star is reborn as a red giant
- Flash causes mixing and burning of residual H-shell. Matter of interior to surface

Figure: Evolutionary track for a $2M_{\odot}$ star (Werner & Herwig, 2006)

 Every 3rd PG1159 is g-mode pulsator, defines GW Vir instability strip in HRD

Figure: Pulsating and non-pulsating PG1159 stars (Werner et al., 2006)

30th of May 2008 PG1520+525

- Pulsations due to cyclic ionization of C and O
- Born-again star: C/O core + homogeneous He/C/O envelope
- Normal stars: C/O core + He shell + H shell
- Astereoseismology using existing optical data: Prove or disprove born-again hypothesis
- Measurement of blue edge of strip: No degeneracy in pulsation models

(日) (同) (ヨ) (ヨ)

• Spectroscopic twin pair PG1159-035 and PG1520+525

Figure: Pulsating and non-pulsating PG1159 stars (Werner et al., 2006)

Jens Adamczak Chandra Spectroscopy of the Hot DA White Dwarf LB1919 and the PG1159 Star PG1520+525

< A >

• Spectroscopic twin pair PG1159-035 and PG1520+525

Figure: Pulsating and non-pulsating PG1159 stars (Werner et al., 2006)

Jens Adamczak Chandra Spectroscopy of the Hot DA White Dwarf LB1919 and the PG1159 Star PG1520+525

▲ 伊 ▶ ▲ 王

1

Э

• Spectroscopic twin pair PG1159-035 and PG1520+525

Figure: Pulsating and non-pulsating PG1159 stars (Werner et al., 2006)

Jens Adamczak Chandra Spectroscopy of the Hot DA White Dwarf LB1919 and the PG1159 Star PG1520+525

▲ 同 ▶ ▲ 目

1

Э

- PG1159-035: $T_{\text{eff}} = 140.000 \text{K}$ PG1520+525: $T_{\text{eff}} = 150.000 \text{K}$
- Most important T_{eff} indicator: Temperature sensitive Wien spectral range of photospheric spectrum (soft X-ray)
- \bullet High precision ${\cal T}_{\rm eff}$ determination with Chandra for PG1520+525

Figure: Chandra spectrum of PG1520+525 (Werner et al., 2006)

1 日 > 4 同 > 4

Thank you for your attention !

Special thanks to ESA education for providing financial support

Jens Adamczak Chandra Spectroscopy of the Hot DA White Dwarf LB1919 and the PG1159 Star PG1520+525

イロト イポト イヨト イヨト