High redshift clusters and their evolution

M.Arnaud (CEA-Sap Saclay France)

Clusters and structure formation

- Primordial fluctuations (DM) that growth under the influence of gravity ⇒ the cosmic ' web ': Voids, Filaments, Blobs : The clusters of galaxies
- Hierarchical clustering:

clusters: forming/growing since z~2 *till now* by merger/accretion along LS filaments

- The cluster population is an evolving population
 - ⇒ test of structure formation scenario (Dark Matter and Gas)
 - \Rightarrow constrain the cosmological parameters

Clusters do exist up to high z

Stanford et al, 06

The most distant (confirmed) cluster

Evolution of dynamical state

See also Hashimoto et al, 07; Maughan et al,08

High z (> 0.5) clusters:

more substructures dynamically younger

as expected in hierarchical scenario

Evolution of (cooling) core

The evolution of scaling properties

as compared to the self-similar model

The dark matter

 Λ CDM simulations of structure formation: Universal $\rho/\rho_c(z)$ cuspy profiles

XMM/Chandra: precise mass profiles from kT(r) - n(r) and HE (relaxed clusters)

Universal profile shape as expected from simulations

The dark matter profile evolution

Still large uncertainties (e.g from T(r) mapped up to 0.3R₂₀₀ only)

Evolution study just starting ...

Gas scaling properties

Standard self similar model ICM evolving in the gravitational potential of the DM

universal gas profiles as for the DM
scaling laws from
GM/R³ = <ρ> = δ ρ_c (z) = δ h²(z) ; δ~500-200
The virial theorem: kT α GM/R

e.g: M α h⁻¹(z) T^{3/2} ; L_x α h (z) T²

- Observation local clusters: 'modified' self-similarity effect of non gravitat. processes: cooling and/or AGN/SN heating
- Interest of evolution study: understand physics of structure formation empirical X-M laws when using clusters for cosmology

Pratt, Arnaud & Pointecouteau, 06

The challenge of evolution studies (1)

The challenge of evolution studies (2)

• Expected 'standard' evolution is not large: $h(z) \nearrow 30\%$ @ z=0.5 for ΛCDM

 \Rightarrow High precision required to measure deviations from standard model

- Decreasing systematics is the main issue
- Recent progresses from :
 - archival Chandra/XMM studies
 - \Rightarrow (now) large samples covering 0.2 < z < 1
 - \Rightarrow quantities derived from same instrument and with same method/definition
 - 10% syst on T_X due to cross-calibration \equiv 30% syst on L_X \equiv standard evolution
 - better estimate of 'virial' radius R₅₀₀
 - need to compare quantities @ various z within given fraction of R₅₀₀
 - use (now better understood/calibrated) mass-proxy relations rather than HE eq. specially for unrelaxed clusters and too poor stat. data
- More (on going) progresses from dedicated LP on 'unbiaised' cluster samples including at z ~0

The (fundamental) mass - proxy relations

not only for R_v but also to compare observ. with theory (N(M,z); gas prop versus M)

Vikhlinin et al, 05; comp: Arnaud, Pointecouteau & Pratt, 05

Arnaud, Pointecouteau & Pratt, 07 comp: Nagai et al, 07; Maughan 07 Y_x: expected robust *new* proxy (Kravtsov et al, 06)

Precise converging calibration of the *local* M-T and M- Y_X relations (normalisations differ from pure grav. models)

The mass - proxy relations : evolution

Mass at high z from HE and spatially resolved kT profiles

Standard evolution

The gas properties - Y_X relations

Scatter 3 lower for L_x with core excluded $\Rightarrow L_x$ also a 'good' mass proxy

Standard evolution

The gas properties - T_X relations

 $R_{500-2500}$ from h(z)R-T calibrated at z=0; assume slope indpt z

Less evolution than in standard model

consistent with $f_{gas} \equiv (1+z)^{-0.39\pm0.13}$ more consistent with SSM when core excluded (CC evolution)

Evolution from representative cluster samples

REXCESS XMM-LP

Selected in log(Lx) bin

 \Rightarrow 'unbaised'

 \Rightarrow good coverage of 2-10 keV range \Rightarrow slope evolution

distant cluster XMM-LP (PI: MA)

Evolution from representative cluster samples (cont)

Böhringer et al, 2007

Arnaud, Jetha, Pointecouteau, Pratt, Bohringer et.al

0.4 < z < 0.6 sample

Evolution from representative cluster samples (cont)

More on baryon physics

First evidence of significant decrease of Fe abundance with z

Might be due to progressive sinking of low entropy gas enriched at high z (Cora et al, 06)

Cosmology with clusters and cluster surveys

Cosmology from gas mass fraction

$$f_{gas} (1 + f_{gal}/f_{gas}) = \Omega_b / \Omega_m$$

Normalisation $\Rightarrow \Omega_{m}$ Distance indicator (as SNI) $\Rightarrow \Omega_{m} \Omega_{\Lambda}$ w

Evolution of the mass function

Chandra follow-up of flux limited RASS and 400SD (sub)samples

M and L_x - M (selection function) from precise mass-proxy relations with correction of Malquist bias

Vikhlinin et al, 08

Evolution as expected in concordance cosmology

New (XMM) cluster surveys (1)

XMM-LP: 72 cluster/groups up to z=1.25

Probe evolution of the faint end of XLF

No significant evolution up to z=1.3

Consistent COSMOS and XMMLSS (Pacaud etal, 07) results

New (XMM) cluster surveys (2)

XCS: serendipitous survey from XMM archive

- Area 500 deg²
- Clusters (> 500 cts \Rightarrow kT): 250-700 (124 with z so far))
- Mesure $\Omega_{\rm m}$ and σ_8 to ~5% accuracy
- Evolution of scaling relations: first results see Llyod -Davies talk

Prospects with SZ (Planck) surveys

combined with XMM follow-up

Gain from SZ surveying

Closely related to the mass

Planck SZ survey

Courtesy of A. Chamballu & J.Barlett; See also Bartlett et al, AN, 08

Close to mass selected survey Efficient at high z

Planck SZ survey (cont)

Courtesy of A. Chamballu, J.Barlett & J.B Melin

~50-fold increase in sample size of massive clusters

combined with XMM follow-up (example)

X-ray bright clusters: $S_x[0.5-2]keV > 10^{-13} cgs$ kT with 10% errors and kT profiles with 25-70 ks XMM per cluster

 \Rightarrow Cosmology from f_{gas} and N(Y_{SZ},z) with well calibrated M- Y_{SZ}

Precise mass profiles

CONCLUSION

Significant progress in the determination of the evolution of cluster properties (decrease of systematical errors).

Mass - (new) proxy relations evolve as in standard model

- => good new for cosmology using clusters
- => Still need to improve constrains on DM properties

Slight but significant deviations observed in gas scaling (Mg-T, Lx-T) relations.

- => new constrains on non grav effects models
- => Need to study the entropy evolution
- Evolution of N(M,z) now established and extension of N(Lx,z) to low mass => more expected from XCS survey

Major step forward expected by combining XMM with forthcoming Planck data