On the chemical abundances of mixed morphology supernova remnants

F. Bocchino1, M. Miceli2, S. Orlando1, E. Troja3

1INAF-Osservatorio Astronomico di Palermo, Italy
2Consorzio COMETA, Catania, Italy
3INAF-Istituto di Fisica Cosmica, Palermo, Italy
Mixed Morphology SNRs

- **DEFINITION**: shell-like (asymmetric) morphology in the radio band and centrally peaked thermal emission in the X-ray band. Flat kT profile. (Rho et al. 1998)

- They seem to be located close to molecular clouds or high density regions

- *A mechanism responsible for producing such an unexpected morphology has not yet been uniquely identified*

W44 (NRAO / AUI / NSF)

Radio, X-ray (ROSAT, Rho et al. 1994), IR (Spitzer, Reach et al. 2006)
Cloud evaporation vs. radiative model

- Both models try to increase the central density
 - White & Long (1991), Shelton et al. (1994)

- Both model have general difficulties in reproducing some of the MM SNRs features
 - Surf.bri. profile too shallow
 - Central density too low

Radiative shell

The X-ray Universe 2008, Granada, 27-30 May
Enhanced abundances in MM SNRs

- Lazendic & Slane (2006) compiled a new list of MM SNRs
 - 10 out of 26 seems to have high Z
 - Multiple and single thermal components (seems not to be related to Z)
 - Evaporating clouds and thermal conduction radiative model do not address the mixing of ejecta and ISM

- In this work, we study the metal abundances of IC443 and G166.0+4.3
 - Listed in Lazendic & Slane (2006) as standard abundances MM SNRs
IC443 X-ray emission

EPIC Count-rate 0.5-1.4 keV

EPIC Count-rate 1.5-5 keV

Troja et al. 08, A&A, in press

F. Bocchino, Mixed-morphology SNRs

The X-ray Universe 2008, Granada, 27-30 May
IC443 metal abundance

Troja et al. 08, A&A, in press

F. Bocchino, Mixed-morphology SNRs

The X-ray Universe 2008, Granada, 27-30 May
IC443 metal abundance

Sulphur EW map

Troja et al. 08, A&A, in press

Troja et al. 08, A&A, in press
More in IC443 metallicity

- Extraction regions defined in term of surface brightness contours
- Cross-region contamination may be an issue
 - SAS support still experimental
- Look for variations of temperature and metallicity vs. surface brightness
F. Bocchino, Mixed-morphology SNRs

The X-ray Universe 2008, Granada, 27-30 May
G166.0+4.3 (a.k.a. VRO 42.05.01)

- Interesting radio morphology (small shell and large “wing”)
- X-ray emission centrally peaked (between shell and wing, perhaps in the hot tunnel)
- Possibly explained in terms of expansion in a “hot tunnel”, bounded by 2 dense regions

G166.0+4.3 (Vro 42.05.01)
1420 MHz CGPS DRAO radio image
XMM-Newton/EPIC image (0.3-5 keV)

The X-ray Universe 2008, Granada, 27-30 May
IC443 and G166.0+4.3 both show evidence of high metal abundances!!!
A new model for MM SNRs

- We explore the possibility that MM SNRs are the results of interaction with progenitor CSM
- 3D HD model
 - Thermal conduction includes flux saturation effects
 - Ejecta mat. with enhanced metallicity
 - 8-fold symmetry assumed
 - FLASH code
MM-SNRs: 3D modeling

Ejecta concentrated at the center of the SNR
MM-SNRs: 3D modeling

Ejecta concentrated at the center of the SNR

![Ejecta and Log mass density](image-url)
X-ray emission

Morphology in the X-ray band changes during the evolution

Phase I: maximum X-ray emission at the (forward) shock front
 -> shell-like morphology

Phase II: X-ray emission centrally peaked
 -> MM SNRs

Thermal conduction very effective and contributes to enhance central emission
Temperature and Metallicity

During the MM phase:
- Temperature decreases with radial distance
- Average T of shocked ejecta > average T of shocked CSM
- Enhanced metallicity at the center of the remnant
- Metallicity gradually decreases with radial distance

Agreement with observations of metal-rich MM SNRs?
Conclusion

- Emerging new class of remnants
 - MM SNRs with enhanced metallicity
 - What fraction of MM belongs to the new class?
 - IC443 and VRO are high-Z, once thought to be low-Z
 - High-Z MM SNRs may be very common

- (M)HD simulations of CSM-shock interactions
 - May help to understand MM, even with high Z, easing the difficulties of traditional models
 - kT, n and Z profiles are desperately needed...
 - Challenging data analysis task