Exploring the High-Redshift X-ray Universe:
Results from Snapshot to Ultradeep Surveys

Niel Brandt (Penn State)
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Will mostly focus on z ~ 2-6. Key growth epoch of massive galaxies.

Available X-ray targets are AGNs, galaxies, and GRBs.
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Growing Population of High-Redshift AGNs

X-ray Selection Optical / NIR Selection - e.g., SDSS
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Wide-field optical / NIR surveys have delivered
many rare, luminous quasars up to z ~ 6.4.
SDSS has delivered ~ 22,000 at z > 2.

X-ray surveys have delivered many
moderate-luminosity and obscured
AGNs at high redshift.

Also now selection at longer wavelengths — e.g., luminous submillimeter galaxies.



Example: Advances in X-ray Studies at z> 4
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More than tenfold enlargement in number of X-ray detected AGNs at z ~ 4-6.4.

Spectroscopy difficult presently due to low X-ray fluxes - XMM-Newton has made
progress at highest luminosities, but really need XEUS and Constellation-X.



Topics to be Covered

Accretion Mechanisms to High Redshift
AGN Outflows at High Redshift

AGNSs in Most-Powerful Starburst
Galaxies at High Redshift

Some Prospects for XEUS and Con-X




Accretion Mechanisms

to High Redshift




Accretion Mechanisms

Are high-redshift SMBHs feeding and growing in same way as local ones?
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Changes in L / L4 have associated X-ray spectral and SED changes.
Rapid growth of first SMBHs by super-Eddington accretion?

Claims and counterclaims about SED evolution (a.,) in literature.




SED Studies with Deep-Survey + Snapshot + Archive Obs.

The Extended Chandra Deep Field-South Snapshot Observations

SDSS 0B36+0054 SDSS 1030+0524

o . z =5.82 z=6.28
2 Ms to 250 ks coverage . .
1125 arcmin? (+150% Moon)
~1150 boint sources "
' 2.2 hr

GOO0DS-S and GEMS. ;

SDSS 1306+0356
z = 5.99

Chandra snapshots remarkably sensitive.

Observe sets of luminous quasars selected from
wide-area optical surveys (4,000-20,000 deg?).

* SDSS at z ~ 5-6.4 (e.g., Shemmer et al. 2006)
* Most luminous known at z > 4 (e.g., Vignali et al. 2005)

: : » Most-luminous SDSS at all redshifts (Just et al. 2007)

<2 IO SO BN T 25 05207 oRiert 1S 22 More than 130 snapshots executed with good success.

90% X-ray detection fraction.




Accretion Mechanisms - X-ray-to-Optical SED

[ Kendall's T,;s = —0.4011 (15.90)| Just et al. (2007)
T X-ray strong Steffen et al. (2006)
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Combined AGN samples now span much of luminosity-redshift plane — much better than in past.
Partial-correlation analyses find clear luminosity dependence (160). X-ray fraction declines with luminosity.
Still not understood physically — hopefully future self-consistent disk + corona simulations can explain.

Important for Soltan-type arguments, AGN-wind models, X-ray universality, and selection of unusual AGNs.




X-ray Evolution Over Cosmic Time?

1log[1(2500 B)] < 29.978 © Steffen et al. (2006)

No detectable redshift dependence.
X-ray-to-optical flux ratios of AGNs
change by < 30% from z = 0-6.
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Sey 1 & BQS SDSS  COMBO-17  X-ray Selected Basic X-ray emission processes of
0 1 2 3 4 5 AGNSs remarkably stable from local
REDSHIFT universe to re-ionization epoch.
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Accretion Mechanisms - X-ray Spectra

XMM-Newton Spectra — e.g., Shemmer et al. (2005) Chandra Joint Fitting — e.g., Vignali et al. (2005)
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Generally little Compton reflection — high luminosities.




L/ Lg,y from Hard X-ray Spectrum

O Piconcelli+05
[C] Shemmer+06,08

Photon index of hard X-ray power law
correlates with normalized accretion rate
for luminous AGNs (~ 103 luminosity range).

Cooling of disk corona?

X-ray based method for L / L4, estimates
with factor ~ 3 uncertainty.




AGN Outflows at

High Redshift




Universality of AGN Outflows
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Much Still to Explore in X-rays

X-ray gratings observations _
Faster and likely

lonized absn. lines en more powe I’fU|

002 - and edges from outflow

NGC 3783
Chandra HETGS
Kaspi et al. (02)




Nature of BAL Quasar X-ray Absorption

Low-ionization BAL quasars appear more X-ray absorbed

e.g., Murray et al. (1995); Proga & Kallman (2004)

Accretion Disk

Models propose X-ray absorption in “shielding ) )
gas” that protects UV wind from over-ionization. Tt SR S e
Kinematic state of X-ray absorber generally unknown
for luminous BAL quasars (unlike Seyfert case).

X-ray absorber could be stalled or could carry most
of flow energy.

Some remarkable X-ray vs. UV relations — X-ray
absorber affects the UV BAL wind.




Feedback from the Quasar Mode?
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Several studies of moderate-to-high redshift AGNs

Gas-rich mergers common in most massive halos, : _
suggest Mgy, / Mg,4e higher in past.

leading to strong starbursts and obscured AGNs.

SMBH-driven outflows may be particularly potent

Strong SMBH-driven outflow extinguishes star ) _
at high redshift.

formation, removes obscuration, limits SMBH growth.

Detailed observations imply this basic picture needs refinement — Can we see the feedback in action?




X—ray Absorblng Outflow from APM 08279+5255
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Absorption features at 8-18 keV in rest frame - X-ray BALs from iron K?

Implied X-ray velocity is v ~ 0.2-0.4c and higher. Much higher than for UV BALs.
X-ray absorber in BAL quasars in state of outflow? As for Seyfert galaxies.

Kinetic power of outflows is potentially very large - High-redshift feedback in action?

Such features could be present, but undetected, in many other BAL quasars.




Expected Variablility

Density changes in simulated BAL quasar wind over 3 yr

log density

Proga et al. (2000)

BOO

High velocity suggests small launching radius for outflow.

Variability of absorption-line profiles expected on timescales
down to ~ a week.




Observed Variability - APM 08279+5255

2007-2008 data confirm the absorption features.

Variability now seen in multiple Chandra and
XMM-Newton observations.

Line energies and strengths change on
timescales down to ~ days.




Some Additional Examples

PG 1115+080 — Chartas et al. (2007)
Res-Frame Energy (keV) PG 1211+143 — Pounds et al. (2007)
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AGNSs in Most-Powerful Starburst
Galaxies at High Redshift




Distant Submillimeter Galaxies

Dust-shrouded starbursts forming stars at ~ 1000 solar
masses / year. Optically nondescript due to extinction.

Submm / radio matching and then ultra-deep Keck
spectroscopy gives redshifts for significant subset.

Typically z ~ 1.5-3 (~ 1000 times more common at z ~ 2).

Seeing epoch of spheroid formation in massive galaxies.




SMBH-Galaxy Connections

F e.g., Ferrarese & Ford (2005) ¢
[ o

60 80100

' Submm sources in 2.Ms Chandra Deep Field-North

Green =_X-ray detected .
«submm sources (17 / 20)

Yellow = Xeray undetected
submm sources (3 / _20)

0.5-8 keV Chandra image

Mgy-o relation implies host-AGN
connection.

Do these massive forming spheroids
contain actively growing SMBHs?

Detailed optical spectral classification
often difficult due to faintness.

Thus, deepest X-ray surveys play
critical role.

About 85% of CDF-N submm galaxies
with precise positions have Chandra
detections, often faint.




Deep X-ray Surveys Reveal the Active Galaxy
Content of Submillimeter Galaxies

Far-infrared Versus X-ray Luminosity

Kl 11530743252 .~ Majority appear to contain moderate-luminosity
M sMMJ02399-0136
AGN, usually obscured.
l.-f59104+4109 . .
W 5C273 AGN fraction at least 40%, accounting for
B a9 1o selection effects.
|-'123060+40505

W Arp 220 92547245 _
T B uecs 1ol 105189.7-2524 Much higher than any other coeval galaxy
’ 0 r 7 W 15040 2438 population (usually ~ 5%).
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SMBHSs in submm galaxies almost continuously
growing during observed phase of intense

CDF-N submm galaxies star formation.
NS?BB‘.’- N5548 | shown as red and blue dots.

Alexander et al.
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Black-Hole vs. Host Masses in Submillimeter
Galaxies — An Earlier Evolutionary Stage?

8 Look-back Time (Gyr) 12

/ Local ULIRGs with Mg,

O 2>1.8 SMGs (stellar mass) Alexander et al. (2008)
@® 2>1.8 SMGs (CO dyn mass)

g d<200 Mpc ULIRGs

Peng et al. quasars

Redshift (z)

Estimate black-hole masses for 6 broad-line
submm galaxies via (cautious) application of
virial mass estimator.

X-ray and FIR luminosities for some of these
match those of more typical submm
galaxies, so apply unification model.

Available data suggest Mg,/ Mg, is lower in
submm galaxies than in z ~ 2-3 quasars
(and local galaxies).

Similar results found for local ULIRGs.

Growth of black-hole seems to lag that of

host galaxy in submm galaxies.

An earlier, pre-quasar evolutionary stage?




Some Prospects for XEUS

and Constellation-X




Abundant High-Redshift AGN
Targets for XEUS and Con-X

UKIDSS

e I g |

LSST alone will deliver ~ 1000
AGNs at z~ 6.5-7.5




AGN Luminosity-Redshift Plane at z > 4

Shemmer et al. (2006)
Constellation-X
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By the time XEUS and Con-X launch, this plot should
have ~ 30,000 AGNs and should extend to z ~ 7.5 or higher.




Complex X-ray Spectra of AGNs

Schematic Broad—Band X—ray Current X-ray spectral constraints
Spectrum of an Active Galaxy
at z > 4 are generally crude (at
most 500-1,500 counts).
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Con-X Simulation of APM 08279+5255

Simulated series of 10 ks Con-X observations, motivated by current Chandra
and XMM-Newton data.

Variations of X-ray BALs should be straightforward to monitor, and can
measure acceleration of absorbers over time.
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Surveys with XEUS and Con-X
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Owing to large collecting areas, many XEUS and Con-X
observations should approach confusion limits.




Con-X and XEUS Serendipitous
Surveys at High Redshift

NONNUNE  3-year AGN yields at z> 4
Il should be ~ 450 for Con-X
and ~ 2,100 for XEUS.

ROSAT UDS
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Can find obscured AGNSs
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®

:LALA C%JS
L;C/?x ® Fe K line redshifts can help
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