Rapid Optical/X-ray flux correlations in the low/hard state of GX 339-4

Poshak Gandhi
(RIKEN, Japan)

K. Makishima, A. Kubota (Japan)
A.C. Fabian, T. Marsh, V. Dhillon (UK)
M. Durant, T. Shahbaz (Spain)
J. Miller (USA)
H. Spruit (Germany)
Timing studies of GX 339-4

- One of the strongest BH candidates $M>6 M_{\text{sun}}$ (Hynes+03)
 - $d\sim 8$ kpc (Zdziarski+04)
 - Faint companion ($R>21$; Shahbaz+01)

- X-ray low: optically-bright; high flaring (~ 10 ms)
- X-ray high: optically-dim (low flaring)
- Very high, Intermediate, Quiescent

- Extensive timing studies (e.g. Dunn+08, Nowak+98, Homan+05…), but only a few simultaneous with rapid optical (Makishima+86, Motch+83)
ULTRACAM:
ultra-fast, triple-beam CCD camera

- light-weight camera
 (visitor instrument on WHT/VLT)
- frame-transfer CCDs with
 low dark current, dead-time
- speeds ~ 500 frames / sec
- 3 simultaneous optical filters
- absolute timing ~ 1 ms

http://www.shef.ac.uk/physics/people/vdhillon/ultracam/
GX339–4 Ultracam/RXTE coordination

ULTRACAM
\(dT=50\text{ ms}\)

133 ms

136 ms

Clouded out
Observations

One 50 ms frame (r' band)
Raw Light curves

- RXTE PCA (<~ 60 keV)
- ULTRACAM r' filter

Red: optical/100
black: X-rays

dt=0.05s

Counts sec^{-1}

relative time (s)
Cross Correlation Function (CCF)

![Graph showing cross correlation function with optical vs. X-ray lag (seconds)]

- Night 1
- Night 2
- Night 3

150 ms

Average
CCF: GX 339-4 vs. XTE J1118+480

(Kanbach et al. 2001)
Light curve flares and dips follow CCF.
Models for XTE J1118+480

“The physical origin of the variability is likely to be complicated.”

- Esin+01: ADAF
- Markoff+01: Pure jet
- Merloni+00: Magnetic corona
- Malzac+04: Common jet/corona reservoir
- Yuan+05: ADAF+jet
- …
Reprocessing of X-rays into optical?
Possible scenario

- Radio observations => presence of jet during our low/hard state observation period (Tomsick+08)

- X-ray spectroscopy (*Swift*, *XMM*) => disk extending to $\sim 10 \ GM/c^2$ or less (Reis talk; Tomsick+08, Miller+06)

- Models suggest optical due to cyclo-synchrotron emission (Fabian+82, di Mateo+99, Markoff+05 ...)

\[\downarrow \]

magnetic energy release in coexistent jet / disk / corona
Jet \rightarrow positive CCF?

1. X-ray flare
2. Increased coronal heating/disc evaporation
3. Jet poloidal field responds on timescales \sim tens \times t_{disk} (dynamical) \sim 100 ms.
 - Synchrotron emission by accelerated particles during this period \Rightarrow positive CCF part.
4. Rapid radiative cooling following acceleration \Rightarrow steep optical CCF fall-off
X-ray heating => anti-correlated CCF ?

X-ray flare (e.g. reconnection) =>

1. release of stored coronal B energy density => \[\downarrow \] coronal synchrotron
2. disk evaporation => \[\downarrow \] disk emission
Complex flux correlations in the Solar corona

Solar flares + coronal loops

Reconnection leads to a complex correlations between non-thermal X-rays and subsequent thermal emission (Neupert effect; TRACE, RHESSI)
Summary

Observations:

- First simultaneous rapid optical/X-ray timing study of GX 339-4 in optically-faint low/hard state.
- Complex CCF has similarities with XTE J1118+480.

Model:

- Optical not re-processed. Synchrotron plausibly fits variable power.
- Perhaps jet responsible for positive CCF, corona for anti-correlation.

What next?:

- Prediction: CCF lag will evolve with prominence of jet.
- Optical polarimetry (especially rapid) detection will test synchrotron model.