

X-rays from Isolated Neutron Stars: The "Three Musketeers" meet the "Magnificent Seven"

Frank Haberl Max-Planck-Institut für extraterrestrische Physik (MPE), Garching

X-ray observations of thermally emitting isolated neutron stars

- Surface temperature distributions
- Magnetic fields

Pulse timing

Absorption features in the X-ray spectra

The case of RX J0720.4-3125

- Spectral variations on long-term time scales

The X-ray Universe 2008 Granada, Spain, 27-30 May 2008

Thermally emitting neutron stars

• Cooling by neutrino emission from interior and photon emission from surface

• Temperatures inferred from X-ray spectra (atmosphere models, blackbody fits)

• Ages from pulsar spin-down timescales or kinematic ages from proper motions

Cooling of neutron stars

- Models assume spherically symmetric temperature distribution
- Observations cannot be explained by a unique temperature Pulsations in the X-ray flux Multi-component X-ray spectra Mismatch between X-ray spectra and optical band

	Р	dP/dt	P/(2P)	В	d	
	(ms)	(ss^{-1})	(years)	(10^{12} G)	(pc)	
B0656+14	385	5.50x10 ⁻¹⁴	111000	4.66	288	
B1055-52	197	5.83x10 ⁻¹⁵	535000	1.09	~750	
Geminga	237	1.10×10^{-14}	342000	1.63	157 (2	50 +120/-62)

- First X-ray detections with Einstein Observatory

 Timing and spectral analysis with ROSAT X-ray spectra dominated by thermal emission two components, soft blackbody plus harder component

- ROSAT + ASCA:

Three-component model

Cool BB probably from the bulk of the star surface

Hot BB from a smaller hot spot

Powerlaw from the magnetosphere

- Chandra + XMM-Newton

Pulse phase spectroscopy De Luca et al. 2005 (ApJ 623, 1051)

Faherty et al. 2007

Greiveldinger et al. 1996

EPIC PN

Pulse profiles in different energy bands

Pulse phase spectroscopy

De Luca et al. 2005 (ApJ 623, 1051)

large neutron star radius (d = 288 pc) $nH = (4.3 \pm 0.2) \times 10^{20} \text{ cm}^{-2}$ (X-ray) $DM = 14.0 \text{ pc cm}^{-3}$ (670 pc) 10% ionization -> $nH = 4.3 \times 10^{20} \text{ cm}^{-2}$

blackbody components vary in antiphase shallow modulation almost aligned rotator neutron star radius: uncertain distance (750 pc) nH = (2.7 ± 0.2) x 10²⁰ cm⁻² DM = 30.1 pc cm⁻³ 10% ionization -> nH ~ 9 x 10²⁰ cm⁻² blackbody components vary in phase strong modulation hot spot disappears for 40% of pulse period supports model of an orthogonal rotator but only one pole? small neutron star radius for d = 157 pc ~12.7 (9.6 - 18.9) km for d = 250 (188 - 370) pc

Challenge for the simple model based on centered dipole geometry

A Legacy of ROSAT: The discovery of seven radio-quiet neutron stars

Blackbody-like X-ray spectra without non-thermal component! Best candidates for "genuine" cooling INSs with undisturbed emission from stellar surface

The X-ray spectrum of RX J1856.5–3754

Haberl (2006)

Thermal, radio-quiet isolated neutron stars

- Soft X-ray sources in ROSAT survey + optically faint \rightarrow isolated neutron stars
- Blackbody-like X-ray spectra, NO non-thermal hard emission
- Low absorption ~ 10^{20} H cm⁻² \rightarrow nearby (2 cases with measured parallax)
- Luminosity ~10³¹ erg s⁻¹
- Constant X-ray flux on time scales of years
- No obvious association with SNR
- No (faint?) radio emission (RBS1223, RBS1774)
- Probably all are X-ray pulsars (3.45 11.37 s)
- Proper Motion is inconsistent with heating by accretion from ISM

Object	T/10 ⁶ K	kT/eV	P/s	Optical	PM/mas/y	distance/pc
RX J0420.0–5022	0.51	44	3.45	B = 26.6		
RX J0720.4–3125	0.99-1.10	85-95	8.39	B = 26.6	97	330 +170/-80
RX J0806.4-4123	1.11	96	11.37	B > 24		
RX J1308.8+2127*	1.00	86	10.31	$m_{50ccd} = 28.6$		
RX J1605.3+3249	1.11	96	6.88?	B = 27.2	145	
RX J1856.5–3754	0.73	62	7.06	B = 25.2	332	161 +18/-14
RX J2143.0+0654**	* 1.17	102	9.44	B = 27.4		

XMM-Newton observations of the M7: absorption features

The origin of the absorption features

Proton cyclotron absorption line ?

In the case of proton scattering harmonics should be greatly suppressed.

Mixture ?

van Kerkwijk & Kaplan 2007, Ap&SS 308, 191

In any case $B \approx 10^{13} - 10^{14} G$

X-ray pulsations

Period history: RX J0720.4–3125 and RBS 1223

$$\begin{split} P &= 8.39 \text{ s} \\ dP/dt &= (0.698 \pm 0.002) \cdot 10^{-13} \text{ s s}^{-1} \\ \tau &= P/2(dP/dt) = 1.9 \cdot 10^{6} \text{ y} \\ B &= 2.4 \cdot 10^{13} \text{ G} \end{split}$$

Kaplan & van Kerkwijk 2005 ApJ 628, L45 P = 10.32 s $dP/dt = (1.120 \pm 0.003) \cdot 10^{-13} \text{ s s}^{-1}$ $\tau = P/2(dP/dt) = 1.5 \cdot 10^{6} \text{ y}$ $B = 3.4 \cdot 10^{13} \text{ G}$ Kaplan & van Kerkwijk 2005 ApJ 635, L65 van Kerkwijk et al. 2007 ApJ 659, L149

Magnetic fields

Unique opportunity to estimate B in two independent ways:

• Magnetic dipole braking \rightarrow B = 3.2 x 10¹⁹ (P x dP/dt)^{1/2} Spin-down rate (P, dP/dt)

(Spin-down luminosity required to power the H α nebula (dE/dt, τ))

• Proton cyclotron absorption \rightarrow B = 1.6 x 10¹¹ E(eV)/(1-2GM/c²R)^{1/2}

Object	P [s]	Semi Ampl.	dP/dt [10 ⁻¹³ ss ⁻¹]	E _{cyc} [eV]	B _{db} [10 ¹³ G]	B _{cyc} [10 ¹³ G]
RX J0420.0–5022	3.45	13%	< 92	?	< 18	
RX J0720.4–3125	8.39	8-15%	0.698(2)	280	2.4	5.6
RX J0806.4-4123	11.37	6%	< 18	430/306 ^{a)}	< 14	8.6/6.1
1RXS J1308.8+2127	10.31	18%	1.120(3)	$300/230^{a}$	3.4	6.0/4.6
RX J1605.3+3249	6.88?			450/400 ^{b)}		9/8
RX J1856.5–3754	7.06	1.5%	0.30(7)	_	1.4	_
1RXS J2143.0+0654	9.43	4%	<60 ^{c)}	750	< 24	15

a) Spectral fit with single line / two lines

b) With single line / three lines at 400 eV, 600 eV and 800 eV

c) Radio detection: Malofeev et al. 2006, ATEL 798

Spectral variations with pulse phase: RBS 1223

Long-term spectral changes from RX J0720.4-3125

Increase at short wavelength: temperature increase Decrease at long wavelength: deeper absorption line

Increase in pulsed fraction Phase shift in hardness ratios varying phase lag between soft and hard emission?

Precession of the neutron star? *de Vries et al. (2004)*

RX J0720.4-3125 longterm spectral variations

Free precession of an isolated neutron star with period 7–8 years $\epsilon = (I_3 - I_1) / I_1 = P_{spin} / P_{prec} \approx 4.10^{-8}$ (moments of inertia for a rigid body) between that reported from of radio pulsars and Her X-1

RX J0720.4-3125: A precessing isolated neutron star

The model:

Two hot polar caps with different temperature

with different size

the hotter is smaller: T-R anti-correlation

 $T_1 = 80 \text{ eV} \sin \theta_1 = 0.8$ $T_2 = 100 \text{ eV} \sin \theta_2 = 0.6$ not exactly antipodal: phase shift of lag between hard and soft emission $\theta_0 = 160^\circ$

Haberl et al. (2006), A&A 451, L17

© Roberto Turolla

See also: Perez-Azorin et al. (2006), A&A 459, 175 (different emission geometry)

RX J0720.4-3125 longterm spectral variations

Cooling of magnetized neutron stars

Strong effects on

- the surface temperature distribution
- the thermal evolution

Summary

Isolated cooling neutron stars The three musketeers 10⁵⁻⁶ years (dP/dt) $(1-5)x10^{6} G (dP/dt)$ The magnificent seven a few 10⁶ years from dP/dt, shorter from kinematic ages 10^{13} G (dP/dt + absorption features) Influence of the magnetic field on surface temperature distribution hot poles - assymetries thermal evolution reliable age estimates needed from observations

- The idealized picture of a neutron star with uniform surface temperature and dipolar magnetic field is too simple.
- Evidence for magnetic field decay.