The X-ray Universe Granada, Spain May 29, 2008

NEUTRON STAR STRUCTURE CONSTRAINTS FROM LOW-RESOLUTION X-RAY SPECTROSCOPY

Craig Heinke
University of Virginia
with G. Rybicki, J. Grindlay, R. Narayan,
R. Wijnands, P. Jonker, C. Deloye, R. Taam

X-RAY BINARIES

- I focus on NSs in quiescence, between outbursts
- See NS surface directly, understand spectrum
- Two complementary methods to constrain NS interiors (see Mendez's talk)

Low-mass X-ray binary (LMXB)

QUIESCENCE

- X-ray spectrum shows: blackbodylike emission from surface; high-energy emission (nature unknown); photoelectric absorption at low energy
- Blackbody-like emission modeled as radiation of whole NS surface through hydrogen atmosphere
- Blackbody-like radiation from either release of internal heat, or continued low-level accretion

X-ray spectrum of Cen X-4 in quiescence, Rutledge 01

H-ATMOSPHERE MODELS

- Assume pure ionized H, B<10⁹ G: adequate for kT~100 eV quiescent NS. Atmosphere fractionates within seconds.
- Models computed by Zavlin & Pavlov, Rybicki in very close agreement. Well-understood case.
- Possible uncertainties:
 - Low-level accretion (alter opacity with traces C,O,N; e.g. Rutledge 02a)
 - Temperature inhomogeneities?

A: RADIUS CONSTRAINTS

- Can constrain radius of blackbody (or NS) if know flux, temperature, distance.
- Flux= $\sigma(R/D)^2 T_{eff}^4$
- Hydrogen atmosphere must be considered when computing T_{eff} . Must correct for redshift of light from neutron star surface, giving constraint on mass and radius.
- Distance rarely known accurately in galaxy, except in globular clusters (Brown+98,Rutledge+02,Heinke+03,Gendre+03).

GLOBULAR CLUSTERS

HST image of 47 Tuc

- Dense clusters of 10⁴⁻⁷ stars of same age, composition
- Distance can be well constrained (currently to ~10%)
- Extremely dense core, leading to stellar interactions
- Stellar collisions or exchanges, putting many neutron stars into close binaries

R. Gilliland, Hubble on 47 Tuc

47 TUCANAE

- Chandra X-ray studies find dozens of X-ray binaries in quiescence, 5 in this deep image of 47 Tuc
- Brightest (X7) shows
 blackbody-like spectrum
 without second component

Chandra on 47 Tuc, Heinke 05

X7 SPECTRUM

- Excellent fit to H-atmosphere
- No evidence for lines, edges
- No variability (hours to decades), no evidence for accretion
- Temp. inhomogeneities testable with long Chandra HRC dataset

Chandra X-ray spectrum, Heinke 06

Perfect test object!!

X7 MASS, RADIUS

- Spectral fit to X7 places constraints on M, radius
- Indicates moderately large radius, excluding several NS structures
- XMM measurements of other cluster NSs find slightly smaller radii (Gendre 03, Webb 07)

90%, 20, 30 contours; Heinke 06

B: COOLING OF NEUTRON STARS

- During accretion, outer crust heated, quickly radiates heat.
- Deep crust under pressure fuses nuclei, heats core (Brown 98).
- Heat from core emitted from surface in quiescence, on timescale of 10⁴ years, at rate ~1/130 of time-averaged flux from accretion under minimal cooling.
- Well-studied transient LMXBs provide constraints on cooling rate, neutrino emission, NS interior structure.

COOLING NEUTRON STARS

- "Standard" neutrino cooling in lowmass neutron stars through neutronneutron bremsstrahlung
- Higher mass neutron stars can reach higher neutrino emissivity
- E.g., direct URCA process: $n \rightarrow p + e + v$, $p+e \rightarrow n+v$, if protons >10%
- Proton superconductivity prevents direct URCA processes, decays with increasing density, allowing range of cooling rates for range of NS masses

COOLING THRU EXOTICA

- Compare young cooling NSs with cooling predictions
- Hottest NS agree with standard cooling
- Coolest NSs consistent with any enhanced cooling mechanism

Yakovlev & Pethick 2004

SAX J1808.4-3658

- Equivalent measurement for transient LMXBs, IF mass transfer rate and quiescent temperature measured.
- NSs in X-ray binaries can accrete substantial mass. Greater range in masses, greater range in cooling rates?
- SAX J1808.4-3658: Regular outbursts (every ~2 years), known distance (3.4-3.6 kpc; Galloway 06) -> known mass transfer rate
- Perfect agreement with predictions of mass transfer rate from gravitational radiation, for Mdot=1*10⁻¹¹ Msun/yr
- Allows accurate quiescent flux prediction!

SAX J1808.4-3658

- X-ray spectrum well-fit with power-law, with no blackbody component
- Constrains neutron star temperature < 40 eV (<4.6*10⁵ K), $L_{bol,NS}$ < 1.9*10³¹ erg/s
- One of most restrictive constraints on neutron star cooling

X-ray spectra and residuals, Heinke et al. 2007

COOLING CONSTRAINTS

- SAX J1808-36 cools quickly, likely has large mass
- 1H 1905+000 (Jonker 07) also cold (kT<39 eV, Lbol,NS<1031 erg/s)
- Suggests direct URCA, by nucleons or hyperons; rejects minimal cooling

Heinke et al. 2008

CONCLUSIONS

- X-ray observations of LMXBs in quiescence provide constraints on behavior of dense matter
- Radius measurements of NS in 47 Tuc suggests moderately large radius or high mass
- SAX J1808.4-3658 and 1H 1905+000 require very fast cooling, disagree with minimal cooling
- Simplest sufficient model consists of n,p,e, μ only, with >10% protons in core to allow direct URCA.

FUTURE OBSERVATIONS

- More globular cluster quiescent LMXBs available for XMM (for the least dense clusters; see Webb 07) and Chandra studies (deep NGC 6397 taken, M28 coming soon). Con-X or XEUS will make major advances.
- Many more transient NSs available for study; distance measurements (e.g. X-ray bursts from RXTE/AstroSAT) are crucial.
- Focusing hard X-ray (>10 keV) instruments will better constrain the nature of the hard spectral component.

X-RAY BINARY TRANSIENTS

- Brief outbursts, most of disk falls onto neutron star
- Disk builds up during long quiescent periods
- Quiescent X-ray flux 10³-10⁵ times fainter than outburst; little or no accretion

EQUATIONS OF STATE

- Proton-rich nucleus gives large maximum mass, radius (MS0)
- Kaons, pions etc. can reduce P, give small radius (GS1, PAL6)
- Shaded regions excluded
- Constraining mass and radius important

Lattimer & Prakash 2004

TRANSIENT LMXB OBSERVATIONS

Table 2. Luminosities and Mass Transfer Rates

Source	N_H $(10^{22} \text{ cm}^{-2})$	kT (eV)	D (kpc)	Outbursts	Years	$\dot{\mathrm{M}} \ (M_{\odot} \ \mathrm{yr}^{-1})$	L_{NS} (erg s ⁻¹)	Refs
Aql X-1	4.2×10^{21}	~94	5	8	10.7	4×10^{-10}	5.3×10^{33}	1,2,3,4
Cen X-4	5.5×10^{20}	76	1.2	-	-	$< 3.3 \times 10^{-11}$	4.8×10^{32}	5,3
4U1608-522	8×10^{21}	170	3.6	4	10.7	3.6×10^{-10}	5.3×10^{33}	6,3,4
KS $1731-260$	1.3×10^{22}	70	7	1	30	$<1.5\times10^{-9}$	5×10^{32}	7,4
$MXB\ 1659-29$	2.0×10^{21}	55	\sim 10?	2	10.7	1.7×10^{-10}	2.0×10^{32}	7,4
EXO 1747-214	4×10^{21}	< 63	< 11	-	-	$< 3 \times 10^{-11}$	$< 7 \times 10^{31}$	8
Terzan 5	1.2×10^{22}	< 131	8.7	2	10.7	3×10^{-10}	$< 2.1 \times 10^{33}$	9,10,4
NGC 6440	7×10^{21}	87	8.5	3	35	1.8×10^{-10}	3.4×10^{32}	11,4
Terzan 1	1.4×10^{22}	74	5.2	-	-	$< 1.5 \times 10^{-10}$	$< 1.1 \times 10^{33}$	12
XTE2123-058	6×10^{20}	< 66	8.5	1	10.7	$< 2.3 \times 10^{-11}$	$<1.4\times10^{32}$	3,4
SAXJ1810.8-2609	3.3×10^{21}	< 72	4.9	1	10.7	$< 1.5 \times 10^{-11}$	$< 2.0 \times 10^{32}$	13,3,4
RXJ1709-2639	4.4×10^{21}	122	8.8	2	10.7	1.8×10^{-10}	2.2×10^{33}	$14,\!15,\!4$
1H1905+000	1.9×10^{21}	< 50	10	-	-	$< 1.1 \times 10^{-10}$	$<4.8\times10^{31}$	16,15
SAXJ1808.4–3658	1.3×10^{21}	< 34	3.5	5	10.7	1.0×10^{-11}	$< 1.1 \times 10^{31}$	17,4,15

Note. — Estimates of quiescent thermal luminosities from neutron star transients, and mass transfer rates (inferred from RXTE ASM observations for systems with RXTE-era outbursts). Quiescent thermal luminosities are computed for the unabsorbed NS component in the 0.01-10 keV range. Outbursts and years columns give