

he nature of the intranight variability of radio-quiet quasars

B. Czerny (1), A. Janiuk (1), A. Siemiginowska (2), A. Gupta (3)

(1) Copernicus Astronomical Center, Poland (2) Harvard Smithsonian Center for Astrophysics, USA (3)Aryabhatta Research Institute of Observational Sciences, India

We select a sample of 10 radio-quiet quasars with confirmed intranight variability and with available X-ray data. We compare the variability properties and the broad band spectral constraints to the predictions of microvariability by three models: (i) irradiation of accretion disk by variable X-ray flux (ii) accretion disk

instability (iii) the presence of a weak blazar component.

We concluded that the third model, i.e. the blazar component model, is the most promising if we adopt a cannonball model for the jet variable emission. In this case, the probability of detecting the microvariability is within 20-80%, depending on the ratio of the disk

to the jet optical luminosity. Variable X-ray irradiation mechanism is also possible but only under additional requirement: either the source should have very narrow H-beta line or occasional extremely strong flares appear at very large disk radii.

able 1. Micro-variable Radio-Qu	et Quasars with available X-ray data ¹
---------------------------------	---

source	RA(2000.0)	DEC(2000.0)	\mathbf{z}	\mathbf{R}	V	$0.1-2.4 \mathrm{keV}$	Γ_X	α_{ox}
PG 0026 + 129	$00\ 29\ 13.7$	$13 \ 16 \ 05$	0.142	1.08	15.41	9.37	2.31 (ROSAT)	1.30
MKN 1014	$01 \ 59 \ 50.1$	$00 \ 23 \ 41$	0.163	2.12	15.69	4.03	2.82 (ROSAT)	1.52
PG $1116 + 215$	$11 \ 19 \ 08.7$	$21 \ 19 \ 18$	0.177	0.72	14.73	12.00	2.62 (ROSAT)	1.43
1750 + 507	$17 \ 51 \ 16.7$	$50 \ 45 \ 39$	0.3	5.01	15.40	11.73	3.03 (ROSAT)	1.47
AKN 120	$05 \ 16 \ 11.4$	-00 08 59	0.032	1.03	14.1	3.6^{3}	2.46 (XMM)	1.44
Q 1252+020	12 55 19.7	$01 \ 44 \ 12$	0.342	0.52	15.48	5.95	_	1.29
upper limits						flux at 1 keV		α_{ox}
0824 ± 098	$08 \ 27 \ 40.1$	$09 \ 42 \ 10$	2.928	_	18.3	< 8.83e - 14		> 1.35
PG $0832 + 251$	08 35 35.9	24 59 41	0.331	1.26	16.1	< 9.3e - 14		> 1.61
PG $0043 + 039$	$00 \ 45 \ 47.2$	04 10 24	0.385	_	16.0 (B)	< 8.6e - 16		> 2.3

¹ columns denote source name, redshift, radio loudness parameter, visual magnitude, X-ray flux in 1.e-14 ergs/s/cm² from Yuan et al. 1998, soft X-ray slope and broad-band optical/X-ray slope; ² (0.5 - 2 keV) from Risaliti et al (2003); ³ from Vaughan et al (2004), in 1.e-11 erg/s/cm² (2-10 keV), with $\Gamma = 2.0$.

PG0043+039 in XMM-Newton. The EPIC-PN image has been smoothed. A nearby galaxy is marked and QSO is in the circle region.

Microvariability Models

• X-ray irradiation of an accretion disk

We consider a strongly variable X-ray emission from a hot plasma above the disk. The X-rays can be partially intercepted by the disk and thermalized, leading to the variable Opt/UV emission.

• Disk instability

• Radiation pressure instability

We compute the time-dependent disk evolution using the code of Janiuk & Czerny (2005), with a viscosity law $\alpha(P_{res}P_{tet})^{1/2}$. This leads to the periodic

disk outbursts on the timescales \gg 1day.

• Magnetorotational instability

Local development of the MRI is modeled using the Markoff chain (King et al. 2004), using the scheme as in Janiuk & Czeny (2007). The strength of the variability is determined by the number of magnetic cells.

• Blazar component

We use the cannonball model of the variability implemented by Janiuk et al. (2006) to model gamma ray bursts. The model can be applied however to all types of unstable jet-like outflow, with a suitable choice of parameters: emission radius, jet Lorentz factor, opening angle, observer's inclination.

References

Becker J.K., 2008, Physics Reports 458, 173

Hartman R.C. Et al., 2001, ApJ, 558, 583

Czerny B., Siemiginowska A., Janiuk A., Gupta A.C., 2008, MNRAS in press (arXiv: 0802.4396)

Table 2. $H\beta$ line properties and	black hole mass	determination for	SDSS sources
---------------------------------------	-----------------	-------------------	--------------

source	$\mathrm{EW}(\mathrm{H}oldsymbol{eta})$ [Å]	$\frac{\text{FWHM}(\text{H}\beta)}{[\text{km s}^{-1}]}$	$\frac{\lambda L_{\lambda}(5100)}{[10^{44} \text{ erg s}^{-1} \text{ cm}^{-2}]}$	$\log M$	$\log L/L_{Edd}$
MKN 1014	-37±3	2230 ± 110	10.8	8.1	-0.27
1422 + 424	-82 ± 4	3380 ± 140	54.7	8.8	-0.28
Q $1252 + 020$	-60 ± 3	4100 ± 140	101.0	9.1	-0.32
PG 0832+251	-74 ± 4	3380 ± 90	51.8	8.8	-0.29

Predicted probability of the INV exceeding 2%, for the X-ray irradiation model, as a function of the corona to disk luminosity ratio, and for 4 values of $H\beta$ line FWHM

108

 M/M_{\odot}

Predicted probability of the INV exceeding 2%, for the blazar model, as a function of the broad band spectral slope. The BH mass is 10⁸ M_{sun}, and models are blazar states, P1 and P3, (3C 273 source; Hartman et al. 2001) and low frequency peak BL spectral shape, LPL (Becker 2007).

Janiuk A., Czerny B., 2005, MNRAS, 356, 205 Janiuk A., Czerny B., Moderski R., Cline D., Matthey C., Otwinowski S., 2006, MNRAS, 356, 205

Janiuk A., Czerny B., 2007, A&A, 466, 793 King A.R., Pringle J.E., West R.G., Livio M., 2004, MNRAS, 348, 111 10^{47} erg s⁻¹).

0.001

0.000