Extended Chandra Multi-Wavelength Project (ChaMPx):

Source Catalog and Applications

Dong-Woo Kim, P. Green, T. L. Aldcroft, W. Barkhouse, D. Haggard, V. Kashyap, A. Mossman, M. A. Agueros, A. Constantin, K. R. Covey, H. Tananbaum, B. Wilkes, & ChaMP Collaboration

Abstract

We present new results of the Extended Chandra Multi-wavelength Project (ChaMPx). In addition to our original ChaMP sample where we only used Chandra AO1-2 archival data, we extend to Chandra AO3-6 observations if they are also covered by the SDSS optical images. We cross-correlated Chandra X-ray and SDSS optical sources and visually inspected both X-ray and optical images for each match. Our catalog consists of 13458 X-ray sources of which 6347 sources have optical counterparts and 1347 sources are further identified by optical spectra. We developed sky coverage maps which provide limiting fluxes at every sky location covered in our X-ray dataset. We summarize recent results from ChaMP/SDSS samples of ~1100 QSOs, ~350 stars, ~150 normal galaxies serendipitously detected in ChaMPx.

ChaMPx Source Catalog

X-ray information for 13458 sources

(select sources detected in IO-3 and S2-3; excluded false sources, e.g., afterglows)

Multi-band X-ray count rate, flux, luminosity (when z is known)

X-ray hardness ratio, colors

Time variability

Position uncertainty (by empirically determined formula)

** Source detection limits (for both detected and undetected sources)

Optical match and imaging information for ~50% (6347 sources)

x-o distance

** matching confidence (given by visual inspection) broad band magnitudes/colors

photometric z for 4953 sources (~3000 w/ z=0.01-0.9)

Optical spectroscopic information for ~10% (1347 sources)

spectroscopic identification

spectroscopic z for 1196 sources

(This catalog will be available in the summer.)

X-ray Source Detection Limits

-15

-14

log fx

-13

-12

(2) determine sky area (as a function of fx) for a given sample

X-ray-Optical Source Match

Visual inspection

Every source was visually inspected and the match confidence was assigned We use only reliable matches with a high confidence

X-ray – optical source position offset
80% of matches within 1 arcsec
85% of matches within 95% X-ray position uncertainties which was empirically determined by simulations

Source Types

Comparison of ID/types: spec_type, photoz_type, ext_type (optical extendedness) Types determined by optical spectra:

659 BLAGN 245 NELG 247 ALG 190 stars

comparison between spec_type and photoz_type

photoz_type		total	BLAGN	NELG	ALG	STAR
-0.1	0.0	583	35+	22	72	15
0.0	0.1	293	1	16	23	21
0.1	0.2	221*	2	13	12	5
0.2	0.3	215*	2	15	5	4
0.3	0.4	200*	6	10	6	1
0.4	0.5	181*	7	15	5	0
0.5	0.6	203*	5	5	4	1
0.6	0.7	167*	5	14	1	0
0.7	0.8	202	11	12	1	3
0.8	0.9	204	11	8	0	1
0.9	1.0	247	19	6	0	0
1.0	1.1	2241**	357	9	1	3

- + Wrong photoz_type (photometric z is way off from spec z)
- ** 2241 objects (identified as photoz_type>1) are likely BLAGNs with a very small (~3%) contamination
- * 73% of 1187 objects (photoz_type = 0.1-0.7) are NELG + ALG.

comparison between spec_type and ext_type

spec_type	ext_type=3 (extended)	ext_type=6 (point-like)
BLAGN	80	397
NELG	138	9
ALG	126	б
contin	2	5
STAR	5	49
unclass	0	1
NULL	2136+	2003++

+ 75% of 2136 optically extended objects are likely galaxies (NELG+ALG).

++ 85% of 2003 optically point-like objects are likely BLAGNs

X-ray to optical flux ratio, F_{XO}

 $[log f_{XO} = log f_X + r/2.5 + 5.36$ (f_X = X-ray flux in 0.5-8 keV)]

	photoz type vs fxo							
spec type	log fxo<-2	-2:-1	>-1	photoz	type	log fxo<-2	-2:-1	>-1
BLAGN	0	38	587	-0.1	0.0	76	100	405
NELG	39	49	124	0.0	0.1	41	86	166
ALG	79	42	72	0.1	0.2	18	42	160
conti	1	1	6	0.2	0.3	8	40	167
star	57	61	15	0.3	0.4	7	25	167
unclass	0	0	1	0.4	0.5	6	25	150
NULL	97	364	4710	0.5	0.6	6	23	170
				0.6	0.7	4	18	145
	273	555	5515	0.7	0.8	8	22	171
				0.8	0.9	4	8	192
	ext type vs fxo			0.9	1.0	6	4	236
			1.0	1.1	6	59	2174	
ext type	log fxo<-2	-2:-1	>-1			100	450	4202
extended	128	293	2057			190	452	4303
point-like	62	159	2246					
NULL	83	103	1212					
	273	555	5515					

Object types and f_{XO} can be used to distinguish different samples.

e.g., *normal galaxies* can be selected by the following criteria (to effectively exclude AGNs):

 $(\log f_{XO} < -2)$ & (spec type = NELG or ALG)

or $(\log f_{XO} < -2)$ & (ext type = extended) & (photoz type < 1.0)

ChaMPx Quasars

P. Green et al. 2008 submitted to ApJ

1135 X-ray detected quasars in z = 0.2 - 5.4, representing 36 Msec of eff. exposure (57 QSOs at z > 3)

No evidence of evolution out to z=5 for either spectral index (Γ) or α_{ox}

Significant hardening toward higher Lx (and smaller α_{ox})

ChaMPx Stars

(ChESS = ChaMP Exended Stellar Survey)

K. R. Covey et al. 2008 submitted to ApJ

348 X-ray emitting stars

(see poster by Argueros et al. in this meeting)

ChaMPx Normal Galaxies

D.-W. Kim et al. 2008 in prep. (preliminary results presented in 2007 Vulcano meeting)

- 147 Normal galaxies selected by Fxo, spec type, extendedness, photoz type with spec z (125) and/or photo z

- Log(N)-log(S) and X-ray luminosity function of normal galaxies

- ULX (off-nuclear luminous X-ray sources): found in ~10% of normal galaxies

- E+A galaxy: 3 candidates with no intrinsic absorption (against dusty starbursts)

- Additionally, 66 XBONG candidates: heavily obscured in the high luminosity end

Log N-Log S for Normal Galaxies

For completeness, we further limit our sample to 24 obsids with full optical imaging spectroscopic obs.

Calculate X-ray sky coverage as a function of S_X by extensive simulations (Kim, M. et al. 07) A similar method as applied for LMXB's XLF (Kim & Fabbiano 03, 04)

- same shape in S-band and B-band
- our slope = 1.5 steeper than CXB (0.7 below the break) less steep than CDF-N (1.74 ± 0.3)
- normal galaxies will exceed in number over the AGN population (Bauer et al. 05) at faint $F_X \sim 10^{-18}$ erg s⁻¹ cm⁻² (lower than the previous estimate)

← ChaMP logN-logS (Kim et al. 2004)

80% of the total extragalactic CXRB resolved at 1-2 keV, but the remaining CXRB requires logN-logS steeper than that of AGNs

 \rightarrow subpopulation of normal galaxies

(the best fit slope of 1.3)

Off-nuclear ULXs

(Ultra-Luminous X-ray Sources)

ULX with $L_X > 10^{39}$ erg s⁻¹ (exceed Eddington L_X of stellar mass BH) often found in star burst galaxies in the local universe and known to be **correlated with SFR (e.g. Gilfanov et al 2004; Swartz et al 2004)** \rightarrow ULX can be used to probe SFR and its increase with z

Ptak and Colbert (2004) found

12% of RC3 spiral and Irr galaxies with 1 or more ULX (10^{39} erg s⁻¹)

Lehmer et al. (2006) found 24 ULX candidates from CDFs at z=0.05 – 0.3 Fraction **elevated** (~80% confidence) by a factor of 1.9 (+1.4 -1.3) from the local value

from E-ChaMP (z = 0.01 - 0.13)

Out of 2740 galaxies (Chandra fov, $R_{25} > 20$ " and r =15-19 mag and z>0.01), 835 galaxies have the limiting luminosity ($L_x = 10^{41} \text{ erg s}^{-1}$)

Fraction of galaxies with ULX candidate ($Lx > 2 \times 10^{39} \text{ erg/s}$) = 10% after removing 20% bkg src within 1/2 D25. assuming that all the src in 1/2 x D25 < r < D25 are bkg src

the fraction depends on galaxy size 50% increase in bigger galaxies (R < -20 mag) than in smaller (R > -20)

Lehmer et al. (2006)

XBONG

X-ray **B**right Optically Normal Galaxies = ALG with $L_X > 10^{42}$ erg s⁻¹ known to exist since Einstein (Elvis et al. 1981)

• Could be intrinsically luminous, but obscured AGN, where the obscuration must be extreme and cover all direction to hide both BL and NL.

Out of **21** candidates, **2 heavily obscured**.

Name	net counts S H	r (mag)	z log	fx/fo log Lz (erg s ⁻	k HR 1σ limit ¹) (lower upper)
CXOMP J105626.8-033721	14.46 86.04	21.26	0.643	-0.08 43.30	5 0.72 (0.63 0.81)
CXOMP J205601.2-042955	0.68 9.18	21.33	0.370	-0.74 42.09	9 1.00 (0.68 1.00)

- Dilution of nuclear emission lines (from type 2) by the stellar light of the host galaxy But no significant distinction between AGN2 and XBONG candidates in Fx, Fo, Lx, Lo
- Inner radiatively inefficient accretion flow which could in turn produce strong IC X-ray emission (Yuan and Narayan 05)

E+A Galaxies

E+A galaxies – strong Balmer absorption lines + no emission in [OII] == Post starbursts with a recent star burst in ~1 Gyr ago, but no sign of current SF

What truncates the star formation abruptly? Link to other types of galaxies in their evolutionary path? (blue galaxies at high z, S0 progenitors?)

- cluster-related mechanism
- merger/interaction origin 🗲 (Goto 05: excess local density)

• dusty starbursts (with current, but hidden star formation)

We identified 3 E+A candidates (2 from ChaMP sp + 3rd one from E-ChaMP, also in Goto 07 sample):

name	net c S	ounts H	r (mag)	z i	log fx/fo	log Lx (erg s ⁻¹)	HR	lσ l: (lower	imit upper)
CXOMP J113956.1+660553	17.5	0.0	18.90	0.376	-1.96	42.25	-1.00	(-1.00	-0.82)
CXOMP J230243.1+083945	136.5	53.5	19.26	0.438	-0.69	43.14	-0.44	(-0.53	-0.34)
092316.3+311431	8.1	3.6	17.58	0.313	-1.11	43.05	-0.67	(-0.92	-0.36)

All candidates have soft X-ray emission \rightarrow *can not be dusty starbursts* 1 (+1) has a close companion in ~50 kpc \rightarrow consistent with *merger/interaction scenario* (Goto 05) X-ray bright \rightarrow E+A phenomenon somehow *enhances X-ray* emission (?)