

Examination of XMM-Newton spectra of the SNR 0509-67.5

D. Kosenko J.Vink S.Blinnikov A.Rasmussen

Astronomical Institute Utrecht

X-ray Universe, Granada, May 28, 2008

The SNR overview

The benefits

• The SNR extension — 25", which makes it a good target for the XMM grating spectrometer

• Distance to the LMC – 50 kpc \Rightarrow $R_{\rm SNR} = 3.6$ pc

• Interstellar absorption in the direction of the LMC is lower than for the Galactic remnants

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○ ○

The SNR overview

The benefits

• The SNR extension — 25", which makes it a good target for the XMM grating spectrometer

• Distance to the LMC - 50 kpc \Rightarrow $R_{\rm SNR} = 3.6$ pc

 Interstellar absorption in the direction of the LMC is lower than for the Galactic remnants

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○ ○

The SNR overview

The benefits

• The SNR extension — 25", which makes it a good target for the XMM grating spectrometer

• Distance to the LMC - 50 kpc \Rightarrow $R_{\text{SNR}} = 3.6$ pc

 Interstellar absorption in the direction of the LMC is lower than for the Galactic remnants

ヘロト 4日ト 4日ト 4日ト 4日ト

The SNR overview

Outline of the data available

The SNR overview

Outline of the data available

The SNR overview

Outline of the data available

EPIC MOS: the data analysis

EPIC MOS and RGS spectra of the SNR

First approach:

fitting with SPEX (Kaastra et al, 1996, up-to-date atomic data)

single $n_e t$ NEI fit

The Fe K feature (6.5 keV) — separately: low ionized iron with $n_e t \simeq 10^9 \text{ s/cm}^3 \Rightarrow$ Swept up iron $\sim 0.05 M_{\odot}$

EPIC MOS: the data analysis

EPIC MOS and RGS spectra of the SNR

First approach:

fitting with SPEX (Kaastra et al, 1996, up-to-date atomic data)

single $n_e t$ NEI fit

The Fe K feature (6.5 keV) — separately: low ionized iron with $n_e t \simeq 10^9 \text{ s/cm}^3 \Rightarrow$ Swept up iron $\sim 0.05 M_{\odot}$

EPIC MOS: the data analysis

EPIC MOS and RGS spectra of the SNR

First approach:

fitting with SPEX (Kaastra et al, 1996, up-to-date atomic data)

single $n_e t$ NEI fit

The Fe K feature (6.5 keV) – separately: low ionized iron with $n_e t \simeq 10^9 \text{ s/cm}^3 \Rightarrow$ Swept up iron ~ $0.05 M_{\odot}$

Results of the EPIC MOS analysis

The SNR parameters from the fitting

Parameter	NEI, MOS+RGS	NEI+pow, MOS+RGS		
$n_e n_H V \times 10^{58}$, cm ⁻³	$1.15_{-0.12}^{+0.12}$	$0.55\substack{+0.15 \\ -0.16}$		
kT, keV	$4.01\substack{+0.23 \\ -0.18}$	$4.55_{-0.20}^{+0.22}$		
$n_e t imes 10^{10}$, s/cm ³	$1.41\substack{+0.03\\-0.03}$	$1.63\substack{+0.04\\-0.04}$		
$\chi^2/d.o.f.$	2.61	2.29		

• Power index $\Gamma = 3.5 \pm 0.1$

• {EM and $R \simeq 3.6 \text{ pc}$ } $\Rightarrow n_{\text{CSM}} \lesssim 0.6 \text{ cm}^{-3}$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

Results of the EPIC MOS analysis

The SNR parameters from the fitting

Parameter	NEI, MOS+RGS	NEI+pow, MOS+RGS		
$n_e n_H V \times 10^{58}$, cm ⁻³	$1.15_{-0.12}^{+0.12}$	$0.55\substack{+0.15\\-0.16}$		
kT, keV	$4.01^{+0.23}_{-0.18}$	$4.55_{-0.20}^{+0.22}$		
$n_e t imes 10^{10}$, s/cm ³	$1.41\substack{+0.03\\-0.03}$	$1.63\substack{+0.04\\-0.04}$		
$\chi^2/d.o.f.$	2.61	2.29		

• Power index $\Gamma = 3.5 \pm 0.1$

• {EM and $R \simeq 3.6 \text{ pc}$ } $\Rightarrow n_{\text{CSM}} \lesssim 0.6 \text{ cm}^{-3}$

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ - つくぐ

Results of the EPIC MOS analysis

The NEI best-fit abundances

Abundances of thermonuclear explosion models:

- deflagration W7 (Nomoto et al, 1984)
- delayed-detonation c050403m (Woosley et al, 2007)

(include swept up $\sim 0.7\,M_\odot$ ejecta and shocked LMC circumstellar medium).

[O - Mg] — overestimated [Fe] — underestimated (Hughes et al 1998)

Results of the EPIC MOS analysis

The NEI best-fit abundances

Abundances of thermonuclear explosion models:

- deflagration W7 (Nomoto et al, 1984)
- delayed-detonation c050403m (Woosley et al, 2007)

(include swept up $\sim 0.7\,M_\odot$ ejecta and shocked LMC circumstellar medium).

[O-Mg] — overestimated [Fe] — underestimated (Hughes et al 1998)

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ・ うらぐ

RGS: the data analysis and results

RGS spectra

 $kT_e = 0.75 \pm 0.3 \text{ keV}$ $\sigma_v = 5000 \pm 400 \text{ km/s}$

N — is not the product of SNIa explosion, but comes from the shocked CSM

 $n_{\rm CSM} = (0.4 - 0.7) \ {\rm cm}^{-3}$

(日)

RGS: the data analysis and results

RGS spectra

$$kT_e = 0.75 \pm 0.3 \text{ keV}$$

 $\sigma_v = 5000 \pm 400 \text{ km/s}$

N — is not the product of SNIa explosion, but comes from the shocked CSM

 $n_{\rm CSM} = (0.4 - 0.7) \ {\rm cm}^{-3}$

-

イロト 不得 とう アイロト

RGS: the data analysis and results

RGS spectra

$$kT_e=0.75\pm0.3$$
 keV
 $\sigma_v=5000\pm400$ km/s

N — is not the product of SNIa explosion, but comes from the shocked CSM

 $n_{\rm CSM} = (0.4 - 0.7) \ {\rm cm}^{-3}$

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○ ○

RGS: the data analysis and results

RGS spectra

$$kT_e = 0.75 \pm 0.3$$
 keV
 $\sigma_v = 5000 \pm 400$ km/s

N — is not the product of SNIa explosion, but comes from the shocked CSM

 $n_{\rm CSM} = (0.4 - 0.7) \ {\rm cm}^{-3}$

< ロ > < 個 > < 目 > < 目 > < 目 > < 回 > < 0 < 0</p>

Numerical simulations

Numerical method

Second approach:

Hydrodynamical model + synthetic X-ray spectrum SUPREMNA hydrocode (Sorokina et al, 2004)

1D (spherical symmetric), but

self-consistent account for time-dependent ionization

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○ ○

- difference in temperatures of electrons and ions
- the influence of radiative losses
- the account of electron thermal conduction
- the account of nonthermal particles
- inner-shell collisional ionization

XMM-Newton spectra of the SNR 0509-67.5 Numerical simulations

Numerical method

Second approach:

Hydrodynamical model + synthetic X-ray spectrum SUPREMNA hydrocode (Sorokina et al, 2004)

1D (spherical symmetric), but

self-consistent account for time-dependent ionization

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○ ○

- difference in temperatures of electrons and ions
- the influence of radiative losses
- the account of electron thermal conduction
- the account of nonthermal particles
- inner-shell collisional ionization

Numerical simulations

Theoretical models of SNIa

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト 一臣 … 釣んで

Numerical simulations

Theoretical models of SNIa

Numerical simulations

X-ray spectra, based on HD simulations

$$\rho_{\rm CSM} = 3 \times 10^{-25} \text{ g/cm}^3$$

t = 400 years

• W7 $E = 1.2 \times 10^{51}$ erg dashed, $\chi^2/d.o.f. \simeq 21$

• c050403 $E = 1.4 \times 10^{51} \text{ erg}$ solid, $\chi^2/d.o.f. \simeq 13$

the lack of the Fe L emission is due to incomplete Fe XVII atomic data イロト・イグトィミト イミト ミーシック

Numerical simulations

X-ray spectra, based on HD simulations

$$\rho_{\text{CSM}} = 3 \times 10^{-25} \text{ g/cm}^3$$
$$t = 400 \text{ years}$$

• W7 $E = 1.2 \times 10^{51}$ erg dashed, $\chi^2/d.o.f. \simeq 21$

• c050403 $E = 1.4 \times 10^{51} \text{ erg}$ solid, $\chi^2/d.o.f. \simeq 13$

the lack of the Fe L emission is due to incomplete Fe XVII atomic data

Conclusions

Overview of SNR 0509-67.5

SPEX fitting and numerical simulations

Parameters	R, pc	t, yrs	n _{CSM} cm ⁻³	σ_v , km/s	kT_e , keV	kT_i , keV	$M_{\rm Fe}, M_{\odot}$
SNR 0509-67.5	3.6	$\lesssim 500$	0.4 - 0.6	5000 ± 400	1.0 - 4.0	~ 70	~ 0.05
W7	3.6	400	0.4	$\lesssim 4300$	1.8 - 1.9	20 - 36	~ 0.12
c050403m	3.8	400	0.4	$\lesssim 4700$	2 - 45	30 - 300	~ 0.36

Data analysis and the simulations:

- $R \simeq 3.6$ pc,
- t = 350 400 years,
- $\sigma_v \simeq 5000 \text{ km/s}$
- $n_{\rm CSM} \simeq 0.4 \ {\rm cm}^{-3}$
- $T_e/T_i \sim 0.01$
- Iron-rich progenitor, with an explosion energy $E = 1.4 imes 10^{51}$ ergs

イロト (同) (三) (三) (つ) (つ)

Conclusions

Overview of SNR 0509-67.5

SPEX fitting and numerical simulations

Parameters	R, pc	t, yrs	n _{CSM} cm ⁻³	σ_v , km/s	kT_e , keV	kT_i , keV	$M_{\rm Fe}, M_{\odot}$
SNR 0509-67.5	3.6	$\lesssim 500$	0.4 - 0.6	5000 ± 400	1.0 - 4.0	~ 70	~ 0.05
W7	3.6	400	0.4	$\lesssim 4300$	1.8 - 1.9	20 - 36	~ 0.12
c050403m	3.8	400	0.4	$\lesssim 4700$	2 - 45	30 - 300	~ 0.36

Data analysis and the simulations:

- $R \simeq 3.6$ pc,
- t = 350 400 years,
- $\sigma_v \simeq 5000 \text{ km/s}$
- $n_{\rm CSM} \simeq 0.4 \ {\rm cm}^{-3}$
- $T_e/T_i \sim 0.01$

• Iron-rich progenitor, with an explosion energy $E = 1.4 \times 10^{51}$ ergs

イロト (同) (三) (三) (つ) (つ)

Conclusions

• First approach: Single ionization timescale NEI fitting helps to estimate and constrain the basic features of the SNR.

 Second approach: With the knowledge of this basic features we can produce a self-consistent numerical model of the remnant for more thorough investigation.