

Outline of the talk

- 1. Introduction
- 2. Global properties
- 3. Origin of the X-ray emission: insights from high-resolution spectroscopy
- 4. Peculiar objects
- 5. Conclusions

2

Hot, massive stars? • the top of the MS (OBAFGKM) • T > 30kK, M > 20 M sol • Blue ⇒ lot of UV • Luminous (10⁶ L sol) • Short-lived (< 10 Myr) • Precusors of SN, NS, BH (+GRB?) • Rare objects but major contributor to mech. input & chem. enrichment • Strong stellar winds!

2. Global properties Nature of the spectrum: Innes & bremsstrahlung ⇒ Thermal! moderate NT emission? possibly in some cases, not yet convincingly detected (De Becker 2007) X-ray spectra at medium (left) and high (bottom) resolution − Rauw et al. 2002 No. 0.01 No. 0.01

2. Global properties

Luminosity:

- Very soon, it was found that for O stars, $L_x \propto 10^{-7} L_{bol}$
- ROSAT-all sky survey (Berghöfer et al. 1997): lot of dispersion!
- XMM/Chandra observations of clusters :
 - tighter relation (e.g. Sana et al. 2006, Antokhin et al. 2008)
 - in soft & medium bands only
 - same for other clusters, O I&III, B stars?

ROSAT (left, based on CRs & HRs) vs XMM (right, based on

3. Origin of the emission

Where do the X-rays come from ?

- Corona but absorption in HMXBs and not enough in hot stars, no coronal line at 530nm, UV superionization profiles not well fitted...
- Shocks between shells in stellar wind but fragmentation needed!

Predictions of the wind-shock model

- Location of the X-rays:
 not at photosphere, a few stellar radii above
- Line profiles : broad (wind accelerated!) + either flat-topped or blueshifted

8

Results from high-resolution spectroscopy Only a small fraction of the wind emits X-ray lines are broad, though not as broad as expected Profiles are more symmetric, without evidence for flat-topped shapes Blueshifts are small or non-existent (except ζ Pup) Line profiles similar whatever the wavelength R (fir) close to photosphere (< 2R*) & ~ R(τ=1) Opacity lower than expected & independent of λ Waldron & Cassinelli 2001, 2007; Kahn et al. 2001; Miller et al. 2002; Leutenegger et al. 2006; Cohen et al. 2006; Oskinova et al. 2006;

3. A change of mind...

Solutions?

- A corona-like contribution in addition to wind-shocks (e.g. Waldron & Cassinelli 2007)
 - $R(fir)\sim R(\tau=1)$ only if mass-loss rate not too small
 - Lines from high-mass ions formed closer to photosphere, too close for windshock model

but controversy about the observational bases?

- A radical shift of thought (e.g. Pollock 2007)
 - ► Forget Coulomb interactions ⇒ Collisionless shocks
 - Plasma NOT at equilibrium
 - Ion-ion interactions: ionization, charge exchange

but need to develop a full, quantitative model?

10

4. Peculiar objects

Interacting winds in binaries

- Strong stellar winds for O-type stars: $dM/dt \sim 10^{-6} M_{sol}/yr$ and $v \sim 2000 \text{ km/s}$
- Gas heated to high temperatures : $kT=3mv^2/16 \Rightarrow additional source of hard X-rays !$

4. Peculiar objects

Interacting winds in binaries

• X-ray emission from the interaction region

 \Rightarrow should be spatially extended!

X-ray & radio contours of WR147 (Pittard et al. 2002)

Visible and X-ray lightcurves of WR20a (Nazé et al. 2008)

4. Peculiar objects

Wolf-Rayet stars

- Evolved descendants of O-type stars with very dense winds
- First surveys: no obvious L_x L_{bol} relation, detection of WR binaries mainly (Pollock et al. 1995 : 20 detections associated with WRs -10 binaries, 4 cand. bin. & 6 single ; 5/3/4 for WN and 5/1/1 for WC)
- New investigations with increased sensibility:
 - WC: no detection of single WR so far $\Rightarrow \log(L_x/L_{bol}) < -7.5..-9$ (Oskinova et al. 2003, Skinner et al. 2006) \Rightarrow due to high absorption of these highly enriched winds?
 - WN: conflicting situation!

WR6, WR46, WR110, WR20b: high kT, hard, variab. ⇒ binaries? (Skinner et al. 2002, Gosset et al. 2008, Nazé et al. 2008)

WR1 : no emission above 4keV (Ignace et al. 2003) \Rightarrow single?

WR40: undetected (Gosset et al. 2005)

⇒ can be explained by hidden binaries or porous winds?

20

4. Peculiar objects

Magnetic objects

- Polarimetric measurements are now unveiling magnetic fields in some hot stars
- If the field is strong enough $(\eta = B^2R^2/[v dM/dt] > 1)$, it can channel the stellar wind towards the equator
 - collision at high speed
 - ⇒ high kT, hard X-ray emission
 - close to the surface
 - \Rightarrow narrow, unshifted X-ray lines
 - modulation expected if the rotation and magnetic axes differ

Gagné et al. (2005)

4. Peculiar objects

Magnetic objects

Observations: mitigated results

• θ^1 Ori C and τ Sco

(Gagné et al. 2005, Mewe et al. 2003, Cohen et al. 2003)

- narrow lines (σ ~350km/s), line shifts ~ 0 km/s, hard emission, $log(L_x/L_{bol})$ ~ -6..-6.5
- Zhekov & Palla (2007)
- for θ^1 Ori C : X-ray and optical emissions simultaneously MAX
- Of?p stars (Nazé et al. 2004, 2007, 2008)
 - broad unshifted lines, soft emission BUT $\log(L_x/L_{bol}) \sim -6$, $kT_2 \sim 1 keV$
 - for HD191612: X-ray and optical emissions simultaneously MAX (?)
- Others (Rauw et al. 2002, Stelzer et al. 2005, Cassinelli et al. 1994, Nazé et al. 2008)
 - 9 Sgr: broad blueshifted lines, X-ray formation region far in the wind
 - COUP: v Ori (B0.5V) has $\log(L_x/L_{bol}) \sim -6.7$ while Par 1772 (B2V) has -7.9

Nazé et al. (2007)

ξ¹CMA: strong X-ray source, soft emission;
 θ Car, β Cru: narrow, unshifted lines but very soft emission & B uncertain!

5. Conclusions

What have we learned on hot stars from the current generation of X-ray telescopes?

- High sensitivity and/or high-resolution spectroscopy offer the possibility to confront observations & models in detail (for both "normal" or peculiar objects)
- X-ray emission is not as we thought!

 \Rightarrow need to revise models

What to do next?

- Study line-profile variations!
- Go to other metallicities!
 - ⇒ need of a high spectral & spatial resolution, high-sensitivity facility

