X-ray emission of the shock of SN1006.

Constraints on electron kinetics

O. Petruk¹, F. Bocchino², G. Castelletti³, G. Dubner⁴, D. Jakubovskyi⁴, M. Kirsch⁵, M. Miceli⁶, I. Telezhinsky⁶

¹Institute for Applied Problems in Mechanics and Mathematics & Astronomical Observatory (Lviv, Ukraine)
²INAF-Osservatorio Astronomico di Palermo & Consorzio COMETA (Italy)
³Instituto de Astronomía y Física del Espacio (Buenos Aires, Argentina)
⁴Institute for Theoretical Physics (Kiev, Ukraine)
⁵European Space Astronomy Centre (Madrid, Spain)
⁶Astronomical Observatory in National University (Kiev, Ukraine)

SNRs and kinetics of electrons

Electrons around the shock in SN1006 reveal the following properties (preliminary results):

- The electron injection efficiency \(\eta_s \) does not reveal any dependence on \(V \), in agreement with model of Ghavamian et al. (2007).
- The highest electron-proton equilibration the smaller injection efficiency: \(\eta_s \sim \nu^{-1.4} \), in agreement with model of Petruk & Bandiera (2006).

Radio observations

The best ever obtained radio image of SN1006 (synthesized beam 8''x5'').

X-ray observations with XMM

SN1006 was observed by XMM 8 times in period 2000-2005. Total cleared exposure is 122 ksec.

X-ray mosaic images

Exposure-corrected EPIC MOS mosaic images of SN1006.

Source regions and spectra

Parameters of interest

- Level of electron thermalization \(T_e \)
- \(\eta_s \) - Injection efficiency of electrons
- \(\eta_e \) - Electron injection efficiency
- \(R_{\text{max}} \) - Maximum energy of accelerated electrons
- \(T_e, R_{\text{max}} \) - Fluxes for X-ray analysis
- Brightness profiles

Conclusions

The goal of the present study is to trace the behavior of the shock emission of the shock of SN1006. The higher electron-proton equilibration the smaller injection efficiency: \(\eta_s \sim \nu^{-1.4} \), in agreement with model of Petruk & Bandiera (2006).

The higher electron-proton equilibration the smaller injection efficiency: \(\eta_s \sim \nu^{-1.4} \), in agreement with model of Ghavamian et al. (2007).

Since \(T_e \) does not reveal any dependence on the shock velocity \(V \), in agreement with model of Ghavamian et al. (2007).

Note: The electron injection efficiency \(\eta_s \) increases with \(V \) due to decrease of the electron thermalization level and increase of the electron injection efficiency.

References

O.Petruk¹, F.Bocchino², G.Castelletti³, G.Dubner⁴, D.Jakubovskyi⁴, M.Kirsch⁵, M.Miceli⁶, I.Telezhinsky⁶

¹Institute for Applied Problems in Mechanics and Mathematics & Astronomical Observatory (Lviv, Ukraine)
²INAF-Osservatorio Astronomico di Palermo & Consorzio COMETA (Italy)
³Instituto de Astronomía y Física del Espacio (Buenos Aires, Argentina)
⁴Institute for Theoretical Physics (Kiev, Ukraine)
⁵European Space Astronomy Centre (Madrid, Spain)
⁶Astronomical Observatory in National University (Kiev, Ukraine)