Gerd Pühlhofer,

Landessternwarte Heidelberg + IAAT Tübingen

Pulsar wind nebulae: The VHE – X-ray connection

HESS = High Energy Stereoscopic System

Photo: © Philippe Plailly

H.E.S.S.: High Energy Stereoscopic System

H.E.S.S. collaboration:

MPI für Kernphysik, Heidelberg Humboldt Univ. Berlin Ruhr-Univ. Bochum Univ. Hamburg Landessternwarte Heidelberg LLR, Ecole Polytechnique, Palaiseau LPNHE. Univ. de Paris VI-VII PCC, College de France, Paris Observatoire Paris-Meudon, LUTH **CEA Saclav** Univ. de Grenoble Univ. Monpellier II **CESR** Toulouse Durham Univ. University of Leeds Dublin Inst. for Adv. Studies Nicolaus Kopernikus Astr. Center, Warsaw Jagiellonian University, Cracow Institute of Nuclear Physics, Warsaw Space research center, Warsaw Charles Univ., Prag Yerewan Physics Inst. North-West Univ., Potchefstroom Univ. of Namibia, Windhoek Univ. Tübingen

Four twelve meter optical dishes Khomas Highlands (Namibia) 1800 above sea level Start of full operation end of 2003

H.E.S.S. event reconstruction parameters:

- Primary direction: < 0.1°
- Field of view: 3° FWHM
- Shower core: 10m
 → Energy resolution: 15%
- Energy range: 0.1–100 TeV

Photo: © Philippe Plailly

Cherenkov light from shower particles

THE VHE (>100 GeV) Galactic plane from the HESS GP survey

Let's blank out:

SNR shells: RXJ 1713-3946, Vela Jr, RCW 86
Binaries: LS 5039, PSR B1259-63
Stellar cluster association: HESS J1023-575 (Westerlund 2)
Molecular cloud associations (confirmed and likely): Galactic ridge, HESS J1745-303, HESS J1800-240 (W28 A), HESS J1834-087 (W41)

For several of the remaining sources, a pulsar wind nebula (PWN) identification is certain
For the vast majority of the rest, a PWN scenario is at least possible

Overview

- Some general statements about the relation between X-ray and VHE pulsar wind nebulae
- Young vs. middle-aged and relic PWN
- Pevatrons and INTEGRAL
- Identification problem of large-offset VHE PWN
- Underluminous X-ray PWN and associated issues

Warning: totally biased towards VHE-detected PWN

Geometry of a pulsar wind (nebula)

Sketch by Slane

- Neutron star
- Cold, non-emitting flow
- Acceleration of particles at termination shock

Visible (i.e. emitting) pulsar wind nebula

Possibly interaction with surrounding SNR (e.g. reverse shock)

X-ray emitting PWN: sample study

Chandra PWN review, Kargaltsev & Pavloy, astro-ph/0801.2602

X-ray emitting PWN: sample study

"Usual" X-ray PWN seen with Chandra

Tori and bow shocks/tails reflect pulsar geometry resp. motion This is not what will be dealt with in this talk

Gaensler et al., 2006

IC 443

PWN: the largest identified Galactic VHE population

Cosmic microwave background ...

... serves as homogeneous target for Inverse compton scattering of electrons

CMB + Galactic "foreground"

In addition, stellar and dust radiation fields can boost IC emission

WMAP Ka (Thermal and nonthermal) Stellar and dust photon fields are hard to access (esp. 3-D)

The young Crab Nebula (1000 years)

compact source, high B-field (160 μ G) \rightarrow

- high synchrotron efficiency, IC emission comparatively low
- synchrotron photons produce relevant target field for IC ("SSC")
 → IC coupled to B-field again

The young Crab Nebula (1000 years)

The young Crab Nebula (1000 years)

Extended pulsar wind nebulae from middle-aged pulsars
are simpler because IC scattering off external, in principle well known target photon fields
are much more common...

... or F_{VHE} / F_X : a widely used diagnostic tool useful for investigating VHE – X-ray source associations

Name	Туре	$f_{\gamma}/f_{ m X}$	Extended in TeV?	X-Ray Counterpart
LSI +61 303	HMXB/ μ -quasar	0.8	No	Yes
LS 5039	HMXB/ μ -quasar	0.7	No	Yes
PSR B1259-63	HMXB/pulsar	0.4	No	Yes
HESS J1634-472	HMXB/NS?	0.03-125	Yes?	IGR J16358–4726?
HESS J1632–478	HMXB?	0.2	Yes?	IGR J16320-4751
1ES 1218+30.4	BL Lac	0.3	No	Yes
Mrk 421	BL Lac	2.0	No	Yes
RX J1713.7–3946	SNR	0.075	Yes	G347.3-0.5
G266.6–1.2	SNR	0.6	Yes	Vela Junior
Crab	PWN	0.008	No	Crab PWN
HESS J1825–137	PWN	3.4	Yes	B1823–13 PWN
MSH 15–52	PWN	0.27	Yes	Yes
Vela X	PWN	0.6	Yes	Yes
G0.9+0.1	PWN?	0.1	No?	Yes
HESS J1804/B1800–21 ^d	PWN	100	Yes	Yes
HESS J1804/Ch1 ^e	PWN?	30	Yes	Yes
HESS J1804/Ch2 ^f	PWN?	50	Yes	Yes
HESS J1804/Diff. ^g	SNR?	≳4	Yes	Yes

from Kargaltsev et al., ApJ 670, 2007

Lifetime of VHE-emitting electrons

from Aharonian et al., A&A 460, 2006

 $\tau_{VHE} \approx 3.1 \times 10^5 \text{ (w}_r/eV \text{ cm}^{-3})^{-1} \text{ (E/1 TeV)}^{-1} \text{ years}$

- **η** normalisation factor due to KN suppression
- W_{ph} energy density in photon fields (CMB, IR, starlight)

 → For low B-fields, the lifetime of VHE-emitting electrons can greatly exceed the lifetime of the X-ray synchrotron emitting (higher-energy) electrons
 → The VHE PWN reflects the injection evolution of the pulsar

HESS J1640-465: a "relic" PWN scenario

G21.5-0.9, Kes 75: Crab companions?

0

-20

-1.2

22

HESS: unresolved

21.5 21 Galactic Longitude (deg.)

Below equipartition B-fields

29.5 Galactic Longitude (deg.) 0

HESS: unresolved

30

VHE spectrum (peak!) interpreted as IC scattering $\rightarrow E_{nonth} \sim 2 \times 10^{45} \text{ erg}$

Caveat:

- \rightarrow this isn't the entire **PWN** (as seen in radio)
- \rightarrow sensitivity limited?

VHE + X-rays in case of a hadronic source

Photon energy

(hadronically mediated acceleration)

"Relic" pulsar wind nebulae

HESS J1825-137: Identification with X-ray PWN G 18.0-0.7

Archetype for a TeV – X-ray PWN association

HESS J1825-137: Identification (mainly) by TeV spectral imaging

PSR J1826-1334

> 2.5 TeV
1 - 2.5 TeV
< 1 TeV</pre>

Asymmetric VHE Pulsar Wind Nebulae

"Crushed Plerions"

Offset VHE PWN

Or pulsar proper motion/ ram pressure?

- + IC electron lifetime larger than synchrotron lifetime
- + larger particle injection efficiency in the past

Confirmation of the crushed PWN scenario ...

... in the HESS J1825-137 / G 18.0-0.7 system

Pavlov et al., ApJ 675, 2008

HESS J1813-178: Identification with X-ray PWN?

If INTEGRAL source can be identified with X-ray (synchrotron) nebula → Object is a "Pevatron"

HESS J1813-178: "Pevatron" hypothesis

Chandra:

- Compact source: identified as pulsar
- PWN dominates up to ~10 keV

Helfand et al., ApJ 665, 2007

HESS J1813-178: Identification with X-ray PWN?

Dean & Hill (astro-ph/0804.3420, RN):

HESS J1809-193: two PSR counterparts

The PWN around PSR J1809-1917

Kargaltsev & Pavlov, ApJ 670, 2007

HESS coll., Komin et al., astro-ph/0709.2432

- → The PWN around PSR J1809-1917 is very likely contributing to HESS J1809-193
- Especially in this case, multiple components in the VHE source cannot be excluded

VHE PWN candidates

HESS J1718-385: a VHE PWN candidate

XMM, 0.5-10 keV

compact but still extended X-ray emission around PSR J1718-3825 \rightarrow likely the compact X-ray PWN, but no clear link to the HESS source + Suzaku pointing to search for weak diffuse emission

HESS J1718-385: a VHE PWN candidate

Suzaku, 0.5-7 keV

GP et al. 2007 (Suzaku conf.):

diffuse emission could morphologically connect XMM PWN with HESS source

HESS J1718-385: a VHE PWN candidate

"Underluminous" PWN

HESS J1837-069: Chandra + RXTE

→ But some interesting / open issues

AX J1838.0-0655: Compact source dominates

INTEGRAL source (Malizia et al. 2006, Lutovinov et al. 2005):

Possible hard X-ray – VHE connection

ightarrow INTEGRAL source is	
presumably not the	
extended PWN	
(cf. HESS J1813-178)	

Reflexion halo around AX J1838.0-0655?

18:33:36.0

- VHE astronomy provides a new window to PWN physics
- Efficient way to detect (relic) PWN because of the ubiquitous target photon fields for IC (CMB, + dust and starlight), independent of B-field
- Combination of X-ray and VHE allows e.g. determination of B-field (with caveats)
- Currently, for identification of VHE PWN mostly morphological arguments and efficiency into VHE flux is used
- X-rays reflect mostly current spin-down power (short synchrotron lifetime), whereas VHE, similar to radio, should allow to access the entire deposited pulsar energy budget (for moderately low B-fields)
- Cf., e.g., to R_{PWN} / R_{shock} "radius method" by Swaluw & Wu (ApJ 555, 2001) based on radio-PWN to infer the initial spin rates

At the sensitivity limit of current VHE instruments

Two shell-type supernova remnants

Plausible hadronic emission scenarios exist for both sources

HESS collaboration, astro-ph/0803.0682 & astro-ph/0803.0702

HESS source of the month April 2008

At the sensitivity limit of current VHE instruments

astro-ph/0803.0682 & astro-ph/0803.0702

CTA: The Cherenkov Telescope Array

CTA (Cherenkov Telescope Array): target sensitivity

CTA: possible array layout

Option: Mix of telescope types

Not to scale !

CTA: The Cherenkov Telescope Array

- Consortium is currently being formed
 Mostly European, recent statement for Japanese commitment
- Currently under design study
 "Call for proposals" for science requirements

CTA: The Cherenkov Telescope Array

http://www.cta-observatory.org

