A deep XMM observation of M82

Piero Ranalli

currently at the University of Bologna; work mainly made at RIKEN, Japan as JSPS fellow

collaborators: A. Comastri (Bologna) L. Origlia (Bologna) R. Maiolino (Arcetri)

special thanks to: K. Makishima (Tokyo)

Outline:

- spatially-dependent abundances

- RGS spectroscopy

- bimodal temperature distribution

- charge-exchange

for all details, see paper: MNRAS 386 (2008), 1464

Please meet M82!

optical image by Subaru telescope

Gallery of spectra: centre $(4 \cdot 10^5 \text{ counts})$

Gallery of spectra: S3 $(5 \cdot 10^4 \text{ counts})$

Gallery of spectra: S5 (1.5.10⁴ counts)

Interpretation framework:

SN yields as a function of progenitor's lifetime, from Woosley & Weaver 95.

most massive stars explode first

their ejecta can be found furthest in the outflow

they have higher yields

abundances in the external outflow are higher

but this is probably too simple to be true

Where has the oxygen gone?

Differential emission measure (i.e. "the temperature") has a bimodal distribution

Gallery of spectra: RGS (3.10⁴ counts)

Gallery of spectra: RGS (3.10⁴ counts)

O VII

Detection of charge-exchange emission

Detection of charge-exchange emission

Detection of charge-exchange emission (the O VII triplet line ratios)

Conclusions:

- chemical abundances depend on distance from the galaxy centre
- bimodal temperature distribution
- possible detection of charge-exchange
- RGS spectroscopy confirms results from EPIC

for all details, see paper: MNRAS 386 (2008), 1464