A deep XMM observation of M82

Piero Ranalli

currently at the University of Bologna; work mainly made at RIKEN, Japan as JSPS fellow

Outline:
collaborators:
A. Comastri (Bologna)

- spatially-dependent abundances
- RGS spectroscopy
- bimodal temperature distribution
special thanks to:
K. Makishima (Tokyo)
- charge-exchange
for all details, see paper:
MNRAS 386 (2008), 1464

Please meet M82!

Spatially resolved spectroscopy with EPIC

Gallery of spectra: centre ($4 \cdot 10^{5}$ counts)

Gallery of spectra: S3 ($5 \cdot 10^{4}$ counts)

Gallery of spectra: S5 (1.5•10 ${ }^{4}$ counts)

Abundances depend on height above the galaxy plane

Abundances depend on height above the galaxy plane

Abundances depend on height above the galaxy plane

Abundances depend on height above the galaxy plane

Abundances depend on height above the galaxy plane

Abundances depend on height above the galaxy plane

Interpretation framework:

SN yields as a function of progenitor's lifetime, from Woosley \& Weaver 95.
most massive stars explode first
their ejecta can be found furthest in the outflow
they have higher yields ∇
abundances in the external outflow are higher
but this is probably too simple to be true

Where has the oxygen gone?

Differential emission measure (i.e. "the temperature") has a bimodal distribution

Gallery of spectra: RGS ($3 \cdot 10^{4}$ counts)

$$
\begin{array}{lll}
2.0 & 1.7 & 1.4
\end{array}
$$

Chamel energy (kev)

Channel wavelength (A)

Gallery of spectra: RGS ($3 \cdot 10^{4}$ counts)

O VII

Detection of charge-exchange emission

Detection of charge-exchange emission

Detection of charge-exchange emission (the O VII triplet line ratios)

Conclusions:

- chemical abundances depend on distance from the galaxy centre
- bimodal temperature distribution
- possible detection of charge-exchange
- RGS spectroscopy confirms results from EPIC
for all details, see paper: MNRAS 386 (2008), 1464

