X-rays from classical T Tauri stars Accretion and wind signatures

Jan Robrade Hamburger Sternwarte

X-ray Universe 2008, Granada, May 2008

(日) (四) (문) (문) (문)

Overview

Classical T Tauri Stars

- Basic Concepts
- X-ray properties of CTTS

2 Accretion and Outflow signatures

- Plasma temperatures
- Plasma densities
- A common picture?
- Exceptional X-ray absorption

<ロト (四) (三) (三) (三) (三)

3 Summary

Basic Concepts X-ray properties of CTTS

Evolution of young low-mass stars

PROPERTIES	Infalling Protostar	Evolved Protostar	Classical T Tauri Star	Weak-lined T Tauri Star	Main Sequence Star
SKETCH			${\not \gg}$	\bigotimes	•0 •
Age (years)	104	10 ⁵	10 ⁶ - 10 ⁷	10 ⁶ - 10 ⁷	> 10 ⁷
mm/INFRARED CLASS	Class 0	Class I	Class II	Class III	(Class III)
Disk	Yes	Thick	Thick	Thin or Non-existent	Possible Planetary System
X-ray	?	Yes	Strong	Strong	Weak
THERMAL RADIO	Yes	Yes	Yes	No	No
Non-THERMAL RADIO	No	Yes	No ?	Yes	Yes

(from Carkner et al. 1998)

CTTS vs. WTTS

- Hα EW (> 10 Å)
 - Accretion/Activity

< 🗇 > < 🖃 >

- \rightarrow usually variable
- IR Class
 - Circumstellar material

 \Rightarrow CTTS are actively accreting matter from a circumstellar disk \rightarrow Influence on disk evolution and planet formation

Basic Concepts X-ray properties of CTTS

Classical T Tauri stars in X-rays

X-ray production

- Magnetic activity (hot plasma, flares)
 - \Rightarrow coronae, star-disk interaction \rightarrow fluorescence (Fe K α)
- Accretion shocks (cool plasma, high density) \Rightarrow magnetically funneled e.g. TW Hya (Kastner et al. 2002)
- Confined winds/jets e.g. DG Tau (Guedel et al. 2008)

X-ray absorption

- Interstellar + circumstellar material
- \Rightarrow Requires high-resolution spectroscopy

Parameter space: viewing angle, mass, age, accretion/outflow rate, magnetic funneling, field geometry...

イロト イヨト イヨト イヨト

Basic Concepts X-ray properties of CTTS

X-ray diagnostics with emission lines

Example: He-like and H-like lines of oxygen

- strong lines, free of blends, but: absorption can be significant
- traces cool plasma regime (2-6 MK)
- Ovu-triplet (21.6-22.1Å): $T_{max} = 2 MK$
 - f/i-ratio sensitive to density (and UV-field)
- Oviii Ly α (18.97Å): T_{max} = 3.2 MK

Basic Concepts X-ray properties of CTTS

High resolution X-ray spectra of CTTS

CTTS	Mission	Reference
BP Tau	XMM	Schmitt et al. (2005)
CR Cha	XMM	Robrade & Schmitt (2006)
MP Mus	XMM	Argiroffi et al. (2007)
RU Lup	XMM	Robrade & Schmitt (2007)
T Tau	XMM	Guedel et al. (2007)
TW Hya	Chandra	Kastner et al. (2002)
"	XMM	Stelzer & Schmitt (2004)
V 4046 Sgr	Chandra	Guenther et al. (2006)

ヘロン 人間 とくほど くほとう

3

Plasma temperatures Plasma densities A common picture? Exceptional X-ray absorption

X-ray temperature diagnostics: OVIII/OVII-ratio

Low OVII ratio (comp. to coronal sources) in **all** accreting stars OVII significantly enhanced/OVIII marginally enhanced or 'coronal' \Rightarrow Excess of cool X-ray emitting plasma

Plasma temperatures Plasma densities A common picture? Exceptional X-ray absorption

イロト イヨト イヨト イヨト

X-ray density diagnostics: OVII f/i-ratio

High plasma densities in **all** low mass $(0.5-2.0 \text{ M}_{\odot})$ CTTS

X-ray emission from accretion shocks and corona \rightarrow f/i-ratio changes during flares (e.g. BP Tau)

Plasma temperatures Plasma densities A common picture? Exceptional X-ray absorption

A common picture?

Density depends on stellar mass and radius

Adopting formulae from Calvet & Gulbring , 1998 and 'free-fall' accretion:

• Accr. density :
$$n \sim \dot{M} \times f^{-1} \times (M^{-1/2}R^{-3/2})$$

• Accr. temp.:
$$T_{Shock} \sim V^2 \sim M/R$$

• Accr. Lum.:
$$L_{Acc} \sim \dot{M} \times M/R$$

Caution: Poor statistics

< 177 ▶

3

Plasma temperatures Plasma densities A common picture? Exceptional X-ray absorption

A ■

Exceptional X-ray absorption

'Extra' absorption in **several** CTTS: optically transparent medium ⇒ wind from star/disk and/or accretion flow

Summary

- CTTS exhibit a large variety of X-ray phenomena
- Magnetic activity dominantes hard X-ray emission
- Accretion contributes the the soft X-ray emission
- Excess of cool plasma in all CTTS
- High densities in **all** low mass (\lesssim 2.0 M $_{\odot}$) CTTS
- Outflows affect X-ray emission

- 4 周 ト - 4 日 ト - 4 日 ト