Thanks to ESA & ESA Education Office for financial support

May 30th 2008 – X-ray Universe 2008 – Granada, Spain

Spectral Energy Distribution of Hyper-Luminous Infrared Galaxies

Ángel Ruiz¹ Francisco J. Carrera¹, Francesca Panessa², Giovanni Miniutti³

1: Instituto de Física de Cantabria (CSIC-UC)

2: INAF/IASF – Roma

3: Laboratoire APC - Paris

What is all the fuss about?

- Supermassive Black Holes in centers of most local galaxies (Kormendy & Gebhardt, 2001)
- Correlation between mass of central BH and spheroid (Magorrian et al. 1998; McLure & Dunlop, 2002)
- Similar evolution of X-ray AGN and optical galaxies (Silvermann et al. 2005)

What is all the fuss about?

- Supermassive Black Holes in centers of most local galaxies (Kormendy & Gebhardt, 2001)
- Correlation between mass of central BH and spheroid (Magorrian et al. 1998; McLure & Dunlop 2002)
- Similar evolution of X-ray AGN and optical galaxies (Silvermann et al. 2005)

Conected growth of central BH through accretion and spheroid through star formation

AGN-galaxy co-evolution

- Strong evidence of AGN-galaxy co-evolution:
 - Conection between the growth of central SMBH through accretion and spheroid through star formation
- How to observe AGN-galaxy coeval:
 - Star formation takes place in heavily obscured environments: need penetrating radiation:
 - **X-rays** (of course!): thermal bremsstrahlung, binaries
 - MIR-FIR-submm: radiation absorbed and re-emitted
 - Radio
 - SMBH growth through accretion produces **AGN activity**:
 - X-rays are the "smoking gun", but:
 - Most accretion power in the Universe absorbed (Fabian & Iwasawa 1999)
 - X-ray background synthesis model require most AGN in the Universe absorbed (Gilli et al. 1999)
 - "Warm" **MIR-FIR** colours: direct emission absorbed and re-emitted
 - Radio

AGN-galaxy co-evolution

- Strong evidence of AGN-galaxy co-evolution:
 - Connection between the growth of central SMBH through accretion and spheroid through star formation
- How to observe AGN-galaxy coeval:

Happy marriage of X-ray and MIR-FIR astronomy: coincidence in time of Chandra, XMM-Newton, Suzaku, Spitzer, Akari, Herschel...

- Radio
- SMBH growth through accretion produces **AGN activity**:
 - X-rays are the "smoking gun", but:
 - Most accretion power in the Universe absorbed (Fabian & Iwasawa 1999)
 - X-ray background synthesis model require most AGN in the Universe absorbed (Gilli et al. 1999)
 - "Warm" **MIR-FIR** colours: direct emission absorbed and re-emitted
 - Radio

Observing AGN-galaxy co-evolution in X-rays and MIR-FIR

- Multi-wavelength surveys: AEGIS, GOODS, COSMOS (see Brusa's talk)
- Targeted MIR observations of X-ray sources:
 - X-ray absorbed broad line QSO (see Page's talk)
- Targeted X-ray observations of MIR-FIR-emiting objects:
 - Ultraluminous IR Galaxies (Franceschini et al. 2003, Teng et al. 2005, Poster G-1 by Anabuki)
 - Hyperluminous IR Galaxies (this talk, Ruiz et al. 2007)

Why HLIRGs?

L_{8-1000μm} = 10¹²-10¹³ L_{sol}: ULIRGS

- Powered by starburst (STB) and some (~50%) harbour AGN (Farrah et al. 2003)
- Fraction of AGN increases with IR luminosity (Veilleux et al. 1999)
- Most in interacting systems (Farrah et al. 2001)
- Sample in X-rays: composite, STB dominated (Franceschini et al. 2003; Teng et al. 2005)

L > 10¹³ L_{sol}: HLIRGS (Rowan-Robinson 2000 [RROO])

- Most with AGN contribution (RR00, Farrah et al. 2002a)
- Only some interacting (~30%) (Farrah et al. 2002b)

Not trivially high luminosity tail of ULIRGs

Some present heavy obscuration in X-rays, even Compton-Thick (Wilman et al. 2003, Iwasawa et al. 2005; Nandra et al. 2007)

Why HLIRGs?

- $L_{8-1000\mu m} = 10^{12} 10^{13} L_{sol}$: ULIRGS
 - Powered by starburst (STB) and some (~50%) harbour AGN
- HLIRGs:

•

- •Strong star formation: > 1000 $\rm M_{\odot}$ / yr
- High AGN fraction
- Good laboratory to investigate star formation and BH growth:
 - Young galaxies experiencing burst of star formation?
 - Transient phase in AGN evolution?
 - Not trivially high luminosity tail of ULIRGs
 - Some present heavy obscuration in X-rays, even Compton-Thick (Wilman et al. 2003, Iwasawa et al. 2005; Nandra et al. 2007)

An XMM-Newton study of HLIRGs: Sample

• Out of the 45 **RR00 sample**, those with:

- Public XMM-Newton data as of Dec. 2004
- Own XMM-Newton AO-5 data
- z < ~2: avoid strong biasing due to high z QSOs

• 14 objects in final sample:

 All SED fitting in MIR/FIR (RR00, Farrah et al. 2002, Verma et al. 2002)

	Source	Type (opt)	Z	AGN / STB (IR SED fitting)	CT?
2	IRAS F00235+1024	Starburst	0.575	0.5/0.5	
2	IRAS 07380-2342	Starburst	0.292	0.6/0.4	X
	IRAS 00182-7112	QSO 2	0.327	0.35/ 0.65	
	IRAS 09104+4109	QSO 2	0.442	1/0	
4	IRAS 12514+1027	Seyfert 2	0.3	0.4/ <mark>0.6</mark>	
	IRAS F15307+3252	Seyfert 2	0.926	0.7/0.3	✓
	PG 1206+459	QSO	1.158	1/0	X
	PG 1247+267	QSO	2.038	1/0	X
	IRAS F12509+3122	QSO	0.780	0.6 /0.4	x
0	IRAS 13279+3401	QSO	0.36	0.7 /0.3	x
Ø	IRAS 14026+4341	QSO 1.5	0.323	0.6 /0.4	x
	IRAS F14218+3845	QSO	1.21	0.2/ <mark>0.8</mark>	x
	IRAS 16347+7037	QSO	1.334	<mark>0.8</mark> /0.2	x
	IRAS 18216+6418	QSO	0.297	0.6/0.4	X

Source	Model	log L _{0.5-2}	log L ₂₋₁₀	CT?
IRAS F00235+1024	3σ upper limit	-	<42.4	✓
IRAS 07380-2342	3σ upper limit	-	<42.5	X
IRAS 00182-7112	reflected+narrow line (0.8keV)	<41.9	44.8	√
IRAS 09104+4109	"thermal"+reflected+narrow line	44.2	45.3	√
IRAS 12514+1027	thermal+absorbed direct (4x10 ²³)	42.2	43.3	√
IRAS F15307+3252	"direct"	<43.1	43.7→45.5	√
PG 1206+459	direct	<44.0	45.1	x
PG 1247+267	"thermal"+direct	45.5	45.9	x
IRAS F12509+3122	"thermal"+direct	43.8	44.3	x
IRAS 13279+3401	3σ upper limit	-	<42.2	X
IRAS 14026+4341	3σ upper limit	-	<42.6	X
IRAS F14218+3845	direct	<43.8	44.6	x
IRAS 16347+7037	"thermal"+direct	45.7	46.0	X
IRAS 18216+6418	"thermal"+direct	45.1	45.6	x

Not detected with XMM-Newton

Source	Model	log L _{0.5-2}	log L ₂₋₁₀	CT?
IRAS F00235+1024	3σ upper limit	-	<42.4	
IRAS 07380-2342	3σ upper limit	-	<42.5	X
IRAS 00182-7112	reflected+narrow line (0.8keV)	<41.9	44.8	√
IRAS 09104+4109	"thermal"+reflected+narrow line	44.2	45.3	\checkmark
IRAS 12514+1027	thermal+absorbed direct (4x10 ²³)	42.2	43.3	√
IRAS F15307+3252	"direct"	<43.1	43.7→45.5	>
PG 1206+459	direct	<44.0	45.1	X
PG 1247+267	"thermal"+direct	45.5	45.9	X
IRAS F12509+3122	"thermal"+direct	43.8	44.3	Х
IRAS 13279+3401	3σ upper limit	-	<42.2	x
IRAS 14026+4341	3σ upper limit	-	<42.6	x
IRAS F14218+3845	direct	<43.8	44.6	х
IRAS 16347+7037	"thermal"+direct	45.7	46.0	x
IRAS 18216+6418	"thermal"+direct	45.1	45.6	Х

Source	Model	log L _{0.5-2}	log L ₂₋₁₀	CT?
IRAS F00235+1024	3σ upper limit	-	<42.4	√
IRAS 07380-2342	3σ upper limit	-	<42.5	X
IRAS 00182-7112	reflected+narrow line (0.8keV)	<41.9	44.8	1
IRAS 09104+4109	"thermal"+reflected+narrow line	44.2	45.3	\checkmark
IRAS 12514+1027	thermal+absorbed direct (4x10 ²³)	42.2	43.3	√
IRAS F15307+3252	"direct"	<43.1	43.7→45.5	√
PG 1206+459	direct	<44.0	45.1	X
PG 1247+267	"thermal"+direct	45.5	45.9	X
IRAS F12509+3122	"thermal"+direct	43.8	44.3	X
IRAS 13279+3401	3σ upper limit	-	<42.2	x
IRAS 14026+4341	3σ upper limit	-	<42.6	x
IRAS F14218+3845	direct	<43.8	44.6	x
IRAS 16347+7037	"thermal"+direct	45.7	46.0	X
IRAS 18216+6418	"thermal"+direct	45.1	45.6	x

Source	Model	log L _{0.5-2}	log L ₂₋₁₀	CT?
IRAS F00235+1024	3σ upper limit	-	<42.4	√
IRAS 07380-2342	3σ upper limit	-	<42.5	x
IRAS 00182-7112	reflected+narrow line (0.8keV)	<41.9	44.8	√
IRAS 09104+4109	"thermal"+reflected+narrow line	44.2	45.3	√
IRAS 12514+1027	thermal+absorbed direct (4x10 ²³)	42.2	43.3	 ✓
IRAS F15307+3252	"direct"	<43.1	43.7→45.5	√
PG 1206+459	direct	<44.0	45.1	x
PG 1247+267	"thermal"+direct	45.5	45.9	x
IRAS F12509+3122	"thermal"+direct	43.8	44.3	x
IRAS 13279+3401	3σ upper limit	-	<42.2	x
IRAS 14026+4341	3σ upper limit	-	<42.6	x
IRAS F14218+3845	direct	<43.8	44.6	x
IRAS 16347+7037	"thermal"+direct	45.7	46.0	x
IRAS 18216+6418	"thermal"+direct	45.1	45.6	x

Only one detection of thermal emission from STB

THUN TO LOTE 2

Spectral Energy Distributions

- Systematic IR excess (or underluminous in X-rays) with respect to local QSO SED:
 - X-ray obscuration?
 - Starburst excess?
 - Departure from standard local SED?
- STB and AGN relative contribution to the total output

Spectral Energy Distributions

- Systematic IR excess (or underluminous in X-rays) with respect to local QSO SED:
 - X-ray obscuration?
 - Starburst excess?
 - Departure from standard local SED?
- STB and AGN relative contribution to the total output

Templates

Well observed SED of local STB and AGN

Different obscuration, width, intensity and peak wavelength

Templates

Well observed SED of local STB and AGN

Type 1 RQ QSO mean SED:

Elvis et al. 1994: log v < 12Richards et al. 2006: log v > 12

$\frac{RQ \ QSO \ luminosity-dependent \ SED:}{\text{Hopkins, Richards & Hernquist 2007}} \\ \alpha_{\text{ox}} \ increase \ with \ L_{\text{BOL}}$

Templates

Well observed SED of local STB and AGN

Starburst (opt.)

• Type 2 AGN sources (opt.)

SEDs of HLIRGs

Type 1 AGN sources (opt.)

non-Luminosity-dependent SED

SEDs of HLIRGs

Type 1 AGN sources (opt.)

Luminosity-dependent SED

SED of HLIRGs

Type 1 AGN sources (opt.)

SED of HLIRGs

Type 1 AGN sources (opt.)

Source	Bes	st fit	log L _{BOL}	AGN / STB	CT?
IRAS F00235+1024	AGN3		46.0	1 / 0	1
IRAS 07380-2342	AGN3		46.6	1 / 0	X
IRAS 00182-7112	AGN3		46.5	1 / 0	√
IRAS 09104+4109	AGN3	STB4	47.0	0.9 / 0.1	✓
IRAS 12514+1027	AGN3	STB4	46.4	0.9 / 0.1	✓
IRAS F15307+3252	AGN1	STB1	47.0	0.2 / <mark>0.8</mark>	√
PG 1206+459	AGN1		48.4	1 / 0	X
PG 1247+267	AGN1		49.2	1 / 0	X
IRAS F12509+3122	AGN1		47.4	1/0	X
IRAS 14026+4341	AGN1	STB4	46.8	0.3 / <mark>0.7</mark>	Х
IRAS F14218+3845	AGN1		47.0	1/0	x
IRAS 16347+7037	AGN1		48.9	1/0	X
IRAS 18216+6418	AGN1	STB1	47.4	0.8 / 0.2	x

Fitting without X-ray data

Source	Bes	st fit	log L _{BOL}	AGN / STB	CT?
IRAS F00235+1024		STB4	45.6	0 / 1	√
IRAS 07380-2342		STB1	46.2	0 / 1	X
IRAS 00182-7112		STB1	46.1	0 / 1	>
IRAS 09104+4109	AGN3	STB1	46.9	0.6 / 0.4	√
IRAS 12514+1027	AGN5	STB2	47.2	0.5 / 0.5	√
IRAS F15307+3252	AGN5	STB4	47.0	0.8 / 0.2	√
PG 1206+459	AGN1		48.4	1/0	X
PG 1247+267	AGN1		49.2	1 / 0	X
IRAS F12509+3122	AGN1		47.4	1/0	X
IRAS 14026+4341		STB4	46.8	0 / 1	X
IRAS F14218+3845	AGN1		47.0	1 /0	x
IRAS 16347+7037	AGN1		48.9	1/0	x
IRAS 18216+6418	AGN1	STB1	47.5	0.7 / 0.3	X

Fitting with X-ray data

Source	Bes	st fit	log L _{BOL}	AGN / STB	CT?
IRAS F00235+1024		STB4	45.6	0 / 1	√
IRAS 07380-2342		STB1	46.2	0 / 1	X
IRAS 00182-7112		STB1	46.1	0 / 1	
IRAS 09104+4109	AGN3	STB1	46.9	0.6 / 0.4	
IRAS 12514+1027	AGN5	STB2	47.2	0.5 / 0.5	
IRAS F15307+3252	AGN5	STB4	47.0	0.8 / 0.2	
PG 1206+459	AGN1		48.4	1/0	X
PG 1247+267	AGN1		49.2	1 / 0	X
IRAS F12509+3122	AGN1		47.4	1 / 0	X
IRAS 14026+4341		STB4	46.8	0 / 1	X
IRAS F14218+3845	AGN1		47.0	1 /0	X
IRAS 16347+7037	AGN1		48.9	1/0	x
IRAS 18216+6418	AGN1	STB1	47.5	0.7 / 0.3	X

Compton Thick

Source	Bes	st fit	log L _{BOL}	AGN / STB	CT?
IRAS F00235+1024		STB4	45.6	0 / 1	√
IRAS 07380-2342		STB1	46.2	0 / 1	X
IRAS 00182-7112		STB1	46.1	0 / 1	-
IRAS 09104+4109	AGN3	STB1	46.9	0.6 / 0.4	1
IRAS 12514+1027	AGN5	STB2	47.2	0.5 / 0.5	√
IRAS F15307+3252	AGN5	STB4	47.0	0.8 / 0.2	√
PG 1206+459	AGN1		48.4	1/0	X
PG 1247+267	AGN1		49.2	1/0	X
IRAS F12509+3122	AGN1		47.4	1/0	X
IRAS 14026+4341		STB4	46.8	0 / 1	х
IRAS F14218+3845	AGN1		47.0	1 /0	x
IRAS 16347+7037	AGN1		48.9	1/0	X
IRAS 18216+6418	AGN1	STB1	47.5	0.7 / 0.3	х

AGN only: 5 sources

Source	Bes	st fit	log L _{BOL}	AGN / STB	CT?
IRAS F00235+1024		STB4	45.6	0 / 1	\checkmark
IRAS 07380-2342		STB1	46.2	0 / 1	X
IRAS 00182-7112		STB1	46.1	0 / 1	\checkmark
IRAS 09104+4109	AGN3	STB1	46.9	0.6 / 0.4	√
IRAS 12514+1027	AGN5	STB2	47.2	0.5 / 0.5	✓
IRAS F15307+3252	AGN5	STB4	47.0	0.8 / 0.2	√
PG 1206+459	AGN1		48.4	1/0	X
PG 1247+267	AGN1		49.2	1/0	X
IRAS F12509+3122	AGN1		47.4	1/0	X
IRAS 14026+4341		STB4	46.8	0 / 1	x
IRAS F14218+3845	AGN1		47.0	1 /0	x
IRAS 16347+7037	AGN1		48.9	1/0	X
IRAS 18216+6418	AGN1	STB1	47.5	0.7 / 0.3	x

SB only: 4 sources

Source	Bes	st fit	log L _{BOL}	AGN / STB	CT?
IRAS F00235+1024		STB4	45.6	0 / 1	√
IRAS 07380-2342		STB1	46.2	0 / 1	X
IRAS 00182-7112		STB1	46.1	0 / 1	
IRAS 09104+4109	AGN3	STB1	46.9	0.6 / 0.4	
IRAS 12514+1027	AGN5	STB2	47.2	0.5 / 0.5	
IRAS F15307+3252	AGN5	STB4	47.0	0.8 / 0.2	\checkmark
PG 1206+459	AGN1		48.4	1 / 0	X
PG 1247+267	AGN1		49.2	1 / 0	X
IRAS F12509+3122	AGN1		47.4	1 / 0	X
IRAS 14026+4341		STB4	46.8	0 / 1	X
IRAS F14218+3845	AGN1		47.0	1 /0	Х
IRAS 16347+7037	AGN1		48.9	1/0	X
IRAS 18216+6418	AGN1	STB1	47.5	0.7 / 0.3	X

Composite: 4 sources

	Source	Bes	st fit	log L _{BOL}	AGN / STB	CT?
	IRAS F00235+1024		STB4	45.6	0/1	-
	IRAS 07380-2342		STB1	46.2	0/1	X
	IRAS 00182-7112		STB1	46.1	0/1	~
	IRAS 09104+4109	AGN3	STB1	46.9	0.6 / 0.4	√
	IRAS 12514+1027	AGN5	STB2	47.2	0.5 / 0.5	√
	IRAS F15307+3252	AGN5	STB4	47.0	0.8 / 0.2	-
Bolo	metric output de	ominated by	AGN emissic	48.4	1/0	X
Bolo		Similated by		49.2	1/0	X
	IRAS F12509+3122	AGN1		47.4	1/0	X
	IRAS 14026+4341		STB4	46.8	0/1	X
	IRAS F14218+3845	AGN1		47.0	1 /0	X
	IRAS 16347+7037	AGN1		48.9	1/0	X
	IRAS 18216+6418	AGN1	STB1	47.5	0.7 / 0.3	x

Conclusions

- XMM-Newton-selected sample of **13 HLIRGs**:
 - 10/13 detected and AGN-dominated in X-rays:
 - Under luminous in X-rays with respect to mean SED of local QSO
- Modelling multi- λ SED (from radio to X-rays):
 - SED fitting consistent with the optical classification
 - 9/13 need an AGN component:
 - 5 pure AGN, 4 composite
 - STB templates preferred: NGC 1482 (aged bursts)
 - AGN component dominates the bolometric output
- X-ray data are mandatory for an accurate estimation of the relative AGN / STB contribution
- SED of type 1 AGN are consistent with a luminosity dependent SED