Three black-hole binaries observed with XMM-Newton: XTE J1817-330, XTE J1856+053 and GRS 1915+105

Glória Sala & Jochen Greiner

MPE, P.O. Box1312, D-85741 Garching bei München, Germany, e-mail: gsala@mpe.mpg.de

XTE J1817-330

The black-hole candidate XTE J1817-330, discovered on 26 January 2006 with RXTE (Remillard et al. Atel#714), was observed by XMM-Newton on 2006 March 15.

Black-hole mass

The low temperature of the accretion disk points to a black hole as accreting object.

The normalization of the accretion disk is similar to the black hole mass M, the distance to the source D and the inclination of the disk i:

$$L_{\text{in}} \approx 0.06 \times 10^{38} \left(\frac{M}{M_\odot}\right)^{0.51} \left(\frac{D}{10^{22} \text{ cm}}\right)^{0.97} \left(\frac{1-\sin i}{0.8}\right)^{0.15} \left(\frac{D}{10^{22} \text{ cm}}\right)^{-0.88}$$

where L_{in} is the luminosity at the innermost stable orbit. The accretion rate depends on M and L_{in}. We plot below:

- Accretion rate vs. black-hole mass derived from the fit to RXTE spectra.
- Assuming it was at L_{in} at maximum in RXTE light-curve, corresponding M at time of RXTE observation (assumed to be June, 1997).
- Assuming it was at a lower limit of 30% of L_{in} at maximum, corresponding M at time of RXTE observation (30% L_{in}).

Oxygen absorption features in the RXTE spectra (in units of 10^{19} cm$^{-2}$) are shown on top.

XMM-Newton: OM, EPIC-pn and RGS spectra

OM, U filter
OM UVW1 filter
EPIC-pn, Burst mode

RGS, order 1

RGS, order 2

Interstellar oxygen lines in the RGS spectra

The observed column density is compatible with the average galactic column density in the source direction (Dickey & Lockman 1990, ARA&A, 28, 215) the source is behind the Galactic disk by minimum distance 1 kpc.

Unabs. L_{in} (at 1 kpc) $= 2.7 \times 10^{38} \left(\frac{D}{10^{22} \text{ cm}}\right)^{0.4} \left(\frac{1-\sin i}{0.8}\right) \text{ erg s}^{-1}$

XTE J1856+053

XMM-Newton: EPIC-pn and RGS spectra

Absorbed model $\chi^2 = 70.8$ (goodness 33%)

EPIC-pn, Timing mode

RGS

Reduction-3

The disk temperature favors a black hole as accreting object.

Unabsorbed $L_{\text{in}} (1-10\text{ keV}) = 2.7 \times 10^{38} \left(\frac{D}{10^{22} \text{ cm}}\right)^{0.4} \left(\frac{1-\sin i}{0.8}\right) \text{ erg s}^{-1}$

GRS 1915+105

On 24, 26, 28 and 30 September 2007 a program of high time resolution simultaneous observations with XMM-Newton (with EPIC-pn in Burst mode) and VLT/ISAAC (with 14 ms exposures) was performed. In addition, RXTE, Swift and radio data (at RATAN-600) were obtained. The analysis of the multi-i data is in progress. Here we show the XMM/EPIC-pn light-curves.

We thank Dr. Norbert Schartel and the XMM-Newton team for carrying out the ToO observations on XTE J1718-330 and XTE J1856+053. We acknowledge the quick-look results provided by the ASM/RXTE team.