New Observational Insights into the Low/ Hard state of Cygnus X-1 with Suzaku

Yamada, Shin’ya.\(^1\)
Makishima, K.\(^{1,6}\); Takahashi, H.\(^2\); Done, C.\(^3\); Kubota, A.\(^4\); Dotani, T.\(^5\); Nakazawa, K.\(^1\)
University of Tokyo\(^1\) Hiroshima University\(^2\) 3 Durham University\(^3\)
Shibaura Institute of Technology \(^4\) JAXA\(^5\) RIKEN\(^6\)

Low/Hard state Black-Hole Binaries

Soft state
- Optically thick and geometrically thin accretion disk
- Multi-color blackbody, \(\sim 1\) keV

Low/Hard state
- Opt. thin and geom. thick disk
- Thermal Compton cloud with \(T_e \sim 100\) keV
- Intense time variability

Size/Shape of the Compton cloud? Seed photons?
The nature of the fast variation?

Wide-band Spectroscopy – detailed Comptonization modeling

Intensity-sorted Spectroscopy -- fast changes of Comptonization
Suzaku Observation of Cygnus X-1

- **Cygnus X-1**
 - $D \sim 2.5$ kpc, $i \sim 45$ deg.
 - $M \sim 15 M_\odot$
 - 70% Low/Hard state

- **Wide-band spectra with Suzaku**
 - **Suzaku Observation**
 - Oct 5th, 2005 (17 ks)
 - Low/Hard state
 - 4.7×10^{37} erg/s (2.5 kpc)

- **Crab ratios**

![Graphs showing XIS, HXD-PIN, HXD-GSO, PIN-BGD, GSO-BGD, Cyg X-1/ Crab, and GRO J1655 / Crab ratios.](image)
More prominent Soft excess (not due to different N_H) Stronger Disk

Stronger Iron line

Spectral Ratios

\[\text{Energy (keV)} \]

Cyg X-1
GRO J1655-40

Stronger reflection
Slope difference
Broad-band Spectrum Modeling of Cygnus X-1

Simultaneous fitting “Double-Comptonization” (Frontera + 2001)

- Thermal Compton (xspec compPS)
 - Hard optical depth ~ 1.5
 - Soft opt. dep. ~ 0.4
 - $T_e \sim 100 \text{ keV}, R_{\text{seed}} \sim 210 \text{ km}$

- Directly visible cool disk
 - $T_{\text{in}} \sim 0.2 \text{ keV}, R_{\text{in}} \sim 250 \text{ km}$

The disk is truncated at $\sqrt{R_{\text{seed}}^2 + R_{\text{in}}^2} \sim 15 R_g$

- Weakly broadened Iron line
 - $E_C 6.3 \text{ keV}, EW 290 \text{ eV}$
 - Sigma $\sim 1 \text{ keV}$

No “relativistic diskline” is needed.

- Reflection from the disk
 - Omega / $2\pi \sim 0.4$

The Model reproduces the spectra of both Cyg X-1 and GRO J1655.
Best-fit Model for Cygnus X-1 with GRO J1655-40

Model spectrum removing N_H
- Double-Comptonization
 - Hard Compton
 - Soft Compton
- Disk ($T_{in} \sim 0.2$ keV)
- Weakly broadened Fe line
- Reflection

- Cyg X-1 has;
 - Stronger disk BB,
 - Stronger iron line,
 - Stronger reflection,
 - Lower T_e.

The spectral difference is explained by inclination effects and a difference of T_e.
A Possible Interpretation of the Wide-band Spectra

- Seed photons provided by the cool disk
- Disk; truncated, intruding into ~ half the clouds. visible through Compton Clouds
- Compton Cloud a large scale height inhomogeneous “holes”
A Possible Interpretation of the Wide-band Spectra

• Seed photons provided by the cool disk
• Disk; truncated, intruding into ~ half the clouds. visible through Compton Clouds
• Compton Cloud a large scale height inhomogeneous “holes”

~ 15 Rg
A Possible Interpretation of the Wide-band Spectra

- Seed photons provided by the cool disk
- Disk; truncated,
intruding into ~ half the clouds.
visible through Compton Clouds
- Compton Cloud
 a large scale height
inhomogeneous
 "holes"

Cyg X-1

GRO J1655-40

BH

Disk

Compton Cloud

~ 15 Rg
A Possible Interpretation of the Wide-band Spectra

• Seed photons provided by the cool disk
• Disk; truncated, intruding into ~ half the clouds. visible through Compton Clouds
• Compton Cloud a large scale height inhomogeneous “holes”

Cyg X-1

GRO J1655-40

Disk

Compton Cloud

“Holes”

~ 15 Rg

BH
A Possible Interpretation of the Wide-band Spectra

- Seed photons provided by the cool disk
- Disk; truncated, intruding into ~ half the clouds, visible through Compton Clouds
- Compton Cloud: a large scale height, inhomogeneous "holes"

GRO J1655-40

Cyg X-1

Directly Visible Disk

Soft Compton

Hard Compton

Iron line

reflection

BH

Disk

Compton Cloud

~ 15 Rg
Fast variability of the thermal Comptonization can be studied
"Intensity-sorted Spectroscopy"

XIS light curve of Cyg X-1 with 1-s binning

Fast variability of the thermal Comptonization can be studied

XIS 1/8 window, deltaT ~ 1sec
HXD delta T = 61 usec

Cross Correlation

XIS-PIN
XIS-GSO
Fast variability of the thermal Comptonization can be studied.
Fast variability of the thermal Comptonization can be studied.
Intensity-sorting in reference to the XIS data

Lightcurves during 400s of Cyg X-1 with Suzaku
Intensity-sorting in reference to the XIS data

Fast variability is well determined by XIS.

High Phase
Low Phase
Applying the sorting to the HXD data --

Fast variability is well determined by XIS.

- **High Phase**
- **Low Phase**

XIS 0+3 (0.7-10 keV)

PIN (10-60 keV)

GSO (60-200 keV)

Time (sec)
“High” and “Low” spectra

When Cyg X-1 gets brighter,
- **Compton Cloud**
 - Seed photon
 - T_e or tau, or both
 - Hard/Soft
- **Disk**
 - T_{in}
 - $L_{total} = L_{raw} + L_{seed}$
- **Iron line**
 - EW
- **Reflection**
 - Omega / 2 pi

High and Low spectra

A Possible Interpretation of Intensity-sorted Spectra

When Cyg X-1 gets brighter,

Omega / 2 pi

Disk

Compton Cloud

BH

Holes” ~ 15 Rg

reflection

Iron line

Directly Visible Disk

Soft Compton

Hard Compton

Low Phase

Iron line reflection

Reflection

Disk

Hard/Soft

Seed photon

L_{\text{total}} (= L_{\text{raw}} + L_{\text{seed}})

T_{\text{m}}

T_e or tau, or both

Compton Cloud

~ 15 Rg
“High” and “Low” spectra

A Possible Interpretation of Intensity-sorted Spectra

When Cyg X-1 gets brighter,

- **Compton Cloud** Seed photon
 - T_e or tau, or both
 - Hard/Soft
 - **Disk** T_{in}
 - $L_{total} = L_{raw} + L_{seed}$
 - **Iron line** EW
 - **Reflection** $\Omega / 2\pi$

Directly Visible Disk

Soft Compton

Hard Compton

Iron line

reflection

```
BH
```

Disk

Compton Cloud

```
```

~ 15 Rg
“High” and “Low” spectra

A Possible Interpretation of Intensity-sorted Spectra

When Cyg X-1 gets brighter,
• Compton Cloud
 Seed photon
 T_e or tau, or both
 Hard/Soft

• Disk
 T_{in}
 $L_{total} = L_{raw} + L_{seed}$

• Iron line
 EW

• Reflection
 Omega / 2 pi

Directly Visible Disk
Soft Compton
Hard Compton
Iron line
Reflection

High Phase Opening fraction decreases

“Holes”

Disk
Compton Cloud

XMM-Newton: The X-ray Universe 2008, Granada 21
Summary

• The 0.7-400 keV Cyg X-1 spectrum with Suzaku is reproduced by “Double-Comptonization” model. The accretion disk is truncated at ~ 15 Rg. No diskline is needed.

• Difference between GRO J1655-40 and Cyg X-1 can be explained by the inclination effects; flat disk, and inflated Compton cloud.

• When Cyg X-1 becomes brighter on ~ 1 sec, the seed photon supply to the clouds increases, and the cloud Te (or tau) decreases slightly.

• The Compton cloud is suggested to be highly inhomogeneous, and its opening fraction is varying.