

Mass Estimates in Ultraluminous X-ray Sources

Luca Zampieri INAF-Astronomical Observatory of Padova

and T. Belloni, P. Casella, A. Lorenzin, G. Miniutti, A. Patruno, G. Ponti

ULXs - Granada 2008 - LZ

1

- What are Ultraluminous X-ray Sources (ULXs)
- Intermediate or stellar mass black holes?
- How to measure the mass of the black hole
- New approach for weighing BHs based on X-ray timing
- Revised estimates of M_{BH} from X-ray spectral fits
- Formation of black holes of 50-150 M_{\odot} in ULXs
- Conclusions

What are Ultraluminous X-ray Sources

ULXs are pointlike, offnuclear X-ray sources in nearby galaxies with L >> Ledd for 1 Msun (L>1.0e39 erg/s)

 Super-Eddington sources, later called UltraLuminous X-ray sources (ULXs) first noticed in *Einstein* data (Long & Van Speybroeck 1983; Helfand 1984; Fabbiano 1989)

• More than 150 sources observed by *ROSAT* (Roberts & Warwick 2000; Colbert & Ptak 2002; Liu & Bregman 2005), *ASCA* (Makishima et al. 2000), *XMM-Newton* (Foschini et al. 2002; Feng & Kaaret 2005), *Chandra* (Swartz et al. 2005)

What are Ultraluminous X-ray Sources

• Background AGNs:

(a) optical spectroscopic
identifications (Foschini et al.
2002b; Masetti et al. 2003)

(b) *Chandra* survey (Swartz et al. 2005): 25%, of which 44% in ellipticals and 14% in spirals

Interacting supernovae:

(a) we know of specific cases (e.g. SN 1978K, SN 1993J)

(b) MEKAL spectra of some ULXs (Feng & Kaaret 2005; Swartz et al. 2005)

Intermediate or stellar mass BHs?

What is the origin of the exceptionally high (isotropic) luminosity of ULXs?

Intermediate mass black hole (IMBH) interpretation

Mass estimates in excess of 100 M_{\odot} are derived from the luminosity and the characteristic temperature/normalization of the soft X-ray component: $L = 10^{39}-10^{41} \text{ erg/s} \implies \text{from L=Ledd:} \quad M_{BH} > 75 (L/10^{40} \text{ erg/s})M_{\odot}$ $T_{MCD} = 0.1-0.3 \text{ keV} \implies \text{from } T_{MCD} = \text{Tdisk}: \mathbf{M}_{BH} > 100 (T_{MCD}/200 \text{ eV})^{-1}$ $^{4}M_{\odot}$

Problems with IMBHs >> 100 $M_{\odot} \rightarrow$ Origin? Unbroken PL slope of the XLF up to 2x10⁴⁰ erg/s? Star forming mass ending up in IMBHs?

Beamed X-ray Binary interpretation

<u>Super-Eddington rates:</u> may occur in particular conditions (e.g. Rappaport et al. 2005), when the donor has a radiative envelope and is more massive than the BH (thermal timescale mass transfer; King et al. 2001, King 2002) Accretion disk geometrically thick M_{BH} > 7.5 (b/0.1) (L/10⁴⁰ erg/s) M_☉ ULXs⁻ Granada 2008 - LZ

Problems \rightarrow L > 10⁴⁰ erg/s ULXs? Isotropically illuminated nebulae?

How to measure the mass of the BH?

Measurement of the dynamic mass function of some ULXs with optical counterparts (NGC 1313 X-2, NGC 4559 X-7): period, radial shift

 \rightarrow Optical spectra at 8m class telescope needed (m_V~23)

Fitting X-ray disc spectral components

• <u>MCD + PL</u> (Miller et al. 2003, 2004): soft, low temperature (0.1-0.4 keV) MCD \rightarrow **M**_{BH} =100-1000 M_{\odot}

Other models proposed (for ULX spectra with distinct curvature above 2 keV):

• <u>MCD+Comptt or</u> <u>DISKPN+EQPAIR</u> (Stobbart et al. 06)

• <u>Fast ionized outflow</u> (Goncalves & Soria 06)

• <u>Slim disc and photon bubble</u> <u>models</u> (Mizuno et al. 07; Finke & Bottcher 07; Vierdayanti et al. 08)

→ No constraint on M_{BH} or M_{BH} <100 M_{\odot}

Scaling of characteristic frequencies

QPOs detected in two ULXs (Strohmayer & Mushotzky 03; Strohmayer et al. 07) M82 X-1: V_{QPO} = 54-166 mHz **NGC5408 X-1**: V_{OPO} = **20 mHz** Properties (rms, coherence, noise, variability) similar to **Type C QPOs** in BHCs (0.1-15 Hz) Extrapolating correlations known to exist for BH binaries and assuming that v_{QPO} scales inversely to **M**_{BH} (Fiorito & Titarchuk 04; Mucciarelli et al. 06; Strohmayer et al. 07; Feng & Kaaret 07): $\begin{array}{rrrr} \text{M82 X-1} & \rightarrow & \text{M}_{\text{BH}} \sim 10\text{-}1000 \ \text{M}_{\odot} \\ \text{NGC5408 X-1} & \rightarrow & \text{M}_{\text{BH}} \sim 600\text{-}5000 \ \text{M}_{\odot} \end{array}$ ULXs - Granada 2008 - LZ

Weighing BHs through X-ray timing

- Variability plane: BHCs and AGNs populate a plane in the parameter space defined by M_{BH}, μ and ν_l, meaning that <u>BH accretion</u> is scale invariant
- If the accretion flow in ULXs behaves in a similar way → M_{BH}
- No extrapolation outside its range of validity

v_l (lower frequency Lorentzian) → extrapolation of the Belloni et al. (2002) relation for BHCs: v_l ~12.37 v_{QPO}^{1.023}

Extension less critical as the relation appears rather tight over a very broad range of frequencies, which includes the frequencies of the QPOs observed in M82 X-1

• Estimate of µ:

* efficient accretion $\rightarrow \mu \sim Lx/0.1 c^2$

* inefficient accretion: 'fundamental plane' (Merloni et al. 2003; Falcke et al 2004) and Lradio- μ relation (Kording et al. 2006) $\rightarrow \mu \sim 0.1 \text{ Lx}^{0.5}\text{M}^{0.43}$ g/s

	Lx (erg/s)	v _{QPO} (mHz)	M _{BH} (M _☉)
M82 X-1	(1.3-1.7)x10 ⁴⁰	54-113	95-1300
NGC 5408 X-1	3x10 ³⁹	20	115-1300

Casella et al. (2008)

X-ray fits with 'physical' disk models

- Soft component modeled as emission from an accretion disk
- The MCD (Mitsuda et al. 1984) is an approximation of a newtonian, standard disk in which the effects of the viscous torque at the inner boundary are neglected

X-ray fits with 'physical' disk models

- Fits of 'physical' disks with a MCD performed for small inclinations in order to obtain correction factors for M_{BH} and μ (e.g. Ebisawa et al. 91; Kubota et al. 05)
- We did similar fits but fixing M_{BH} or μ
- Acceptable fits with different best-fit values of R_{inBB}. For fixed M_{BH}:
 * standard (e.g. Kubota et al. 1998):

 $R_{inBB} = 13 Rg$

- * Schwarzschild:
- R_{inBB} = **19** Rg
- * *Kerr* (max rotat.): R_{inBB} = **38** Rg

Lorenzin & Zampieri (2008)

 Adopting the appropriate value of b=R_{inBB}/Rg, it is possible to revise estimates of M_{BH} based on MCD spectral fits of ULXs

$$\begin{split} \frac{M}{M_{\odot}} &= \frac{67.5}{b} f^2 \left(\frac{D}{1 \text{ Mpc}}\right) \left(\frac{K_{BB}}{\cos i}\right)^{1/2} \\ \frac{\dot{M}}{\dot{M}_{\rm Edd}} &= 0.1 b^2 f^2 \left(\frac{D}{1 \text{ Mpc}}\right) \left(\frac{K_{BB}}{\cos i}\right)^{1/2} \left(\frac{T_{in}}{1 \text{ keV}}\right)^4 \end{split}$$

KBB, Tin → MCD fitting parameters
f~1.7 color correction
factor (Shimura & Takahara 1995)

	M 81 X-9	NGC 1313 X-1	NGC 1313 X-2
$R_{in,BB}\ (R_g)$	$M~(M_{\odot})$	$M~(M_{\odot})$	$M~(M_{\odot})$
6	490^{+200}_{-140}	640^{+60}_{-60}	320^{+260}_{-100}
standard $_{13}$	230_{-72}^{+87}	290^{+29}_{-23}	140^{+120}_{-43}
Schwarz. 19	$140^{+\dot{7}\ddot{2}}_{-35}$	200^{+14}_{-23}	$100 + \frac{87}{35}$
Kerr 38	87^{+23}_{-29}	$100 \frac{+87}{-87}$	50^{+43}_{-14}
43.		Lorenz	zin & Zampieri (20

14

(a) Revised fits with relativistic disk models \rightarrow M_{BH} ~50-200 M_{\odot}

(b) Fits with a slim disk (Vierdayanti et al. 2006, 2008) and/or a dominant comptonizing corona (Done & Kubota 2006, Stobbart 2006), and comparison with very-high state of BHCs (Soria 2008)

 \rightarrow M_{BH} ~50-100 M_{\odot}

• Many ULXs (apart from M82 X-1 and NGC 5408 X-1) may not contain ~1000 M_{\odot} black holes, but BHs with mass ~50-150 M_{\odot}

• How can these "small" IMBHs (e.g. Roberts 2007) form?

• No exotic channel required. From stellar evolution of massive stars up to the pre-supernova stage (e.g. Heger et al. 2003):

BHs may form direct core collapse from a very massive progenitor (50-150 M_{\odot}) in a low metallicity environment (e.g. Cropper et al. 2004; Zampieri et al. 2004)

Conclusions

- Presented estimates of BH masses in ULXs based on the "variability plane": M82 X-1, NGC5408 X-1 → M_{BH} ~ 100-1000 M_☉
- Compared the temperature profiles and spectra of standard and relativistic accretion disks with those of a MCD model → revision of the MCD estimates of M_{BH} (max rotating Kerr has M_{BH} 6 times lower)
- \rightarrow May ULXs host BHs with masses ~50-150 M_{\odot} ?
- → Formation via direct core collapse from a very massive progenitor (50-150 M_☉) in a low metallicity, clustered environment

Future perspectives:

- * Measurements of the dynamical mass function from spectral lines
- * Very long X-ray observations of selected ULXs (timing, high counting statistics spectra)
- * Monitoring of ULXs with known QPOs
- * Detailed investigation of the environment (metallicity, parent population) \rightarrow IR, UV?
- * Theoretical models of disc spectra at high Mdot