

P. Esqueja, R.D. Saxtonb, A.M. Readc, S. Komossaa, M. Sanchez-Portalb, M. J. Freyberg^a, B. Altieri^b ^aMax-Planck-Institut für extraterrestrische Physik (MPE).

^bEuropean Space Astronomy Centre (ESAC). Dept. of Physics and Astronomy, Leicester University. Dynamical studies assert that massive dark objects reside in the nuclei of many galaxy bulges. Dormant supermassive black holes hosted by normal galaxies can be unveiled by the detection of outburst radiation produced when a star is tidally disrupted and subsequently accreted by the nuclear black hole. A number of these exceptional events have been hitherto detected, being the two most recent ones discovered by XMM-Newton during slew observations.

Tidal disruption events

Slew observations

Two optically non-active galaxies were detected in the XMM-Newton Slew Survey (Saxton et al. in prep.) showing soft X-ray spectra and high variability with respect to ROSAT All-Sky Survey (RASS) 2σ -upper limits (Esquej et al. 2007, A&A, 462,49):

- NGC 3599 is an elliptical galaxy at redshift 0.0028. This source is the nearest non-active galaxy hosting a supermassive black hole ever detected. Its unabsorbed X-ray luminosity at the time of the slew observation was 1.38.1041 erg s-1, the flux comparison with its RASS upper limit showed a variability factor of 88. Upper limits derived from ROSAT PSPC pointed observations show variability factors of 297 and 100.

- SDSS J132341.97+482701.3 is a normal galaxy at redshift 0.088, variability factor of 83 and X-ray luminosity from the slew of 1.39-1043 erg s-1.

Follow-up observations

XMM-Newton:

Follow-up pointed XMM-Newton observations performed on NGC 3599 and SDSS J132341.97+482701.3 roughly two years after the slew observation show that both sources have faded by factors of 50 and 70 respectively leaving a residual steep soft spectrum. The best-fit model to the EPIC spectra for NGC 3599 is a power-law model (Γ_x =2.95) with absorption fixed to the Galactic value (Fig.3).

Swift:

Both sources were too weak at the time of the follow-up Swift observations to apply spectral fits but they were used to provide a further point in the light curve of the sources.

SS 1132341 97+482701 3

Temporal evolution of the sources

Subsequent observations of NGC 3599 have shown that its flux experimented a further decrease following a t-53 decline law (as can be inferred from the light curve in Fig. 4), consistent with efficient accretion to the supermassive black hole from a thick disk (Ulmer 1999, ApJ, 514, 180). SDSS J132341.97 +482701.3 was very faint at the time of the Swift observation and only a few counts were detected, the flux did not decrease as expected. Nevertheless, its light curve can be also fitted by a t53 decline law.

XMM-Newton: The Next Decade 4-6 June 2007, ESAC, Spain