The evolution histories of five clusters of galaxies

Florence Durret ^{1,2} and Gastão B. Lima Neto³

1. IAP, CNRS UMR 7095, Université Pierre et Marie Curie, 98bis Bd Arago, 75014 Paris, France

- 2. Observatoire de Paris, LERMA, UMR 8112, 61 Avenue de l'Observatoire, 75014 Paris, France
- 3. Instituto de Astronomia, Geofisica e C. Atmosf./USP, R. do Matão 1226, 05508-090 São Paulo, Brazil

Summary

relaxed as previously believed. With its high sensitivity, XMM-Newton allows to obtain temperature, metallicity, pressure and entropy maps which give detailed informations on the cluster properties and evolutionary scenarios. XMM-Newton and Chandra have extensively shown that clusters of galaxies are not often as

We present here results for five medium-redshift clusters (z=0.223-0.313) ranging from almost relaxed to strongly perturbed by ongoing merging processes

The data and data reduction	
The data were all taken from the XMM-Newton archive and are	e presented in Table 1.

Table 1. Summary of the XMM-Newton data

Cluster	Obs. nb	Initial exp. time (s) MOS1/MOS2/PN	Clean exp. time (s) MOS1/MOS2/PN	redshift	scale (1 arcmin) $(h_{70}^{-1} \text{ kpc})$	Galactic $N_{\rm H}$ (10 ²⁰ cm ⁻²)	
Cl 2137.3-2353	0008830101	21833/21834/17567	9714/9716/6039	0.313	275.1	3.55	
Abell 2390	0111270101	22223/22227/17985	9381/8861/6337	0.230	220.5	6.80	
Abell 68	0084230201	29243/29259/22295	23750/22365/15573	0.255	238.0	4.94	
Abell 1763	0084230901	25881/25898/19451	11996/12335/ 8444	0.223	215.3	5.87	
Abell 2744	0042340101	17390/17420/11581	13673/13627/ 9174	0.306	272.2	1.31	

The ODFs were treated following the standard procedure:

- The background was taken from blank sky templates by Lumb et al. (2002), with a careful analysis of possible soft excess or unusual absoption. Maps were computed by combining MOS1, MOS2 and pn data following an adaptive pixel
- procedure described in Durret et al.(2005) and Lima Neto & Durret (2007). The event files are rebinned with a pixel size of 12.8x12.8 arcsec². For each pixel the RMF and ARF are computed and a MEKAL plasma model is fit using XSPEC v11.2.
- The maps were computed with an adaptive kernel technique, adjusting spatially the minimum net count number before the spectral fit. A minimum number of 900 counts is set in each pixel after background subtraction.

MEKAL one-component fits (left) and VMEKAL fits (right). Error bars are 90% confidence level)

	Cl 2137	Aball 2390	Abell 68	Abell 1763	Abell 2744	E	Cl 2137	Abell 2390	Abell 68	Abell 1763	Abell 2
R (arcmin/kpc)	2.0/550	3.5/772	3.5/833	3.5/754	1.7/454	$\frac{1}{kT(keV)}$	4 57 + 0.12	8.07 ± 0.20	6.94 ± 0.20	5 13+0 16	9 70 + 0
Z(Zo)	4.00 ± 0.10	9.40 ± 0.32 0.31 ± 0.05	0.23 ± 0.05	0.35 ± 0.18	0.21 ± 0.07	No. (10 ²⁰ cm ⁻²)	3 69 ± 0.33	8 80 ± 0.25	8 08 ± 0.32	5.97*	114 ± 0
NH(1020 cm-2)*	3.55	6.90	4.94	5.87	1.31	2/def	800/808	1671/1601	1606/1473	1807/1308	1038/1
2/dof	892/893	1805/1596	1835/1468	1593/1239	1046/1027	- <u>x</u> /doi	0.01 1.0.00	1011/1001	1000/14/3	1807/1308	2036/1
T (keV)	4.54 ± 0.19	7.98 ± 0.30	6.82 ± 0.30	7.38 ± 0.30	9.40 ± 0.67	be	0.31 ± 0.03	0.23 ± 0.02	0.17 ± 0.02	0.25 ± 0.04	0.17 ± 1
$Z(Z_{O})$	0.37 ± 0.05	0.29 ± 0.04	0.22 ± 0.04	0.27 ± 0.05	0.20 ± 0.07	Ne				1.25 ± 0.58	1.25 ± 0
N _H (10 ²⁸ cm ⁻²)	3.69 ± 0.44	8.82 ± 0.32	8.27 ± 0.40	< 0.3	1.40 ± 0.40	Mg	0.64 ± 0.34	0.85 ± 0.34	1.10 ± 0.37		0.77 ± 0
χ^2/dof	891/892	1695/1595	1627/1467	1265/1238	1046/1026	Si	0.34 ± 0.16	0.48 ± 0.18	0.20 ± 0.18		0.77 + 0
fx[0.5-2 keV]	2.2 ± 0.1	7.0 ± 0.2	2.2 ± 0.1	3.4 ± 0.2	1.6 ± 0.1	0	0.20 1.010	0.20 1.0.00		41410.62	
fx [2.0-10.0 keV]	2.4 ± 0.1	12.8 ± 0.5	3.5 ± 0.1	4.7 ± 0.3	3.1 ± 0.2	0	0.56 ± 0.16	0.32 ± 0.20		4.1420.00	
Lx [0.5-2.0 keV]	6.2 ± 0.3	9.8 ± 0.5	3.8 ± 0.1	4.6 ± 0.4	4.1 ± 0.4	Ni	0.60 ± 0.54	1.27 ± 0.41	1.54 ± 0.47	2.36±1.05	
Lx [2.0-10.0 keV]	8.8 ± 0.5	20.2 ± 1.0	7.2 ± 0.2	7.4 ± 0.7	9.2 ± 0.9	S			0.31 ± 0.22		
Linder.	20.0 ± 1.0	42.7 ± 2.0	15.2 ± 0.4	16.0 ± 1.5	19.8 ± 2.0				7729774019709101		

Discussion

- Cl 2137.3-23 is quite relaxed but shows a hotter region to the northwest and a higher metallicity strip along a region extending southeast to northwest. <u>This suggests a past merger</u> which has crossed the cluster from the southeast several Gyr ago. It shows Mg and Ni overabundances +
- •Abell 68 is also hot and X-ray luminous and its maps also suggest the existence of previous mergers several Gyr ago.
- Abell 2390 is hot and massive with some evidence for previous mergers in the north-south direction
- Abell 1763 has a long emission tail to the southwest, cooler than the main cluster (3.4 keV instead of almost 10 keV for the main cluster). Its temperature and metallicity maps are highly perturbed. As confirmed by a double bent radio source, there is a merging going on from the southwest to the north east. Besides, the higher temperature to the northwest of the centre suggest that a second more recent merger has taken place from the southeast towards.
- the northwest. Abell 2744 is a cluster undergoing several major mergers, both coming from the southeast (also see Zhang et al. 2004 and Finoguenov et all 2005). A second more recent minor merger is also probably coming from the northwest.
- . A detailed description of this work can be found in
- Lima Neto & Durret (2007, A&A submitted)

References

Durret F., Lima Neto G.B., Forman W. 2005, A&A 432, 809 Finoguenov A., Böhringer H., Zhang Y.-Y. 2005, A&A 442, 827 Lima Neto G.B & Durret F. 2007, A&A submitted Lumb D.H., Warwick R.S., Page M., De Luca A. 2002, A&A 389, 93 Zhang Y.-Y., Finoguenov A., Böhringer H. et al. 2004, A&A 413, 49

Fig.4. Pressure and entropy maps for Abell 2390.

The perturbed clusters Abell 1763 (z=0.223) and Abell 2744 (z=0.306)

Quality of the maps: two tests on Abell 1763

Fig. 9 Top: relative error on the temperature σ_{kT}/kT . Middle: relative error on the metallicity

ttom: reduced χ2 map.

Acknowledgements. We acknowledge financial support from the CAPES/COFECUB. F.D. acknowledges support from CNES and PNC, CNRS/INSU, and G.B.L.N. acknowledges support from the CNPq and FAPESP.