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ABSTRACT

Cosmological hydrodynamic simulations predict that the
low redshift universe comprises of a web of warm–hot in-
tergalactic gas and galaxies, with groups of galaxies and
clusters forming at dense knots in these filaments. Our
own Galaxy being no exception is also expected to be sur-
rounded by the warm–hot intergalactic medium, filling
the Local Group. Some theoretical models also predict
the existence of a hot Galactic corona. With X-ray and
FUV observations of extragalactic sources, we can probe
the warm–hot gas through absorption lines of highly ion-
ized elements. Indeed, Chandra, XMM and FUSE ob-
servations have detected ����� absorption lines toward
many sightlines. The debate that has emerged is over the
interpretation of these observations: are the ����� ab-
sorption systems from the halo of our Galaxy or from
the extended Local Group environment? This has im-
portant implications for our understanding of the mass
of the Local Group, the physical conditions in the inter-
galactic medium, the structure of the Galaxy and galaxy
formation in general. We will present the current status
of the debate and discuss our ongoing observing program
aimed at understanding the ����� absorption systems,
with an emphasis on the high quality Chandraspectra of
the Mrk 421 and Mrk 279 sightlines.
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1. INTRODUCTION

The intergalactic medium (IGM) is expected to contain
most of the baryonic matter in the universe, a tenuous fil-
amentary “web” of gas bridging the gaps between col-
lapsed objects such as galaxies and clusters. At high
redshifts ( �
	�� ) this web appears in quasar spectra as
a multitude of Lyman alpha forest absorption lines. In
the nearby universe, on the other hand, hydrodynamic
simulations show that most of the IGM has been shock–
heated to a warm–hot (WHIM) phase with temperatures
of �� ��� K (Cen & Ostriker, 1999; Davé et al., 2001). At

these temperatures scant neutral hydrogen remains, and
the IGM is thus best detected through absorption lines
from highly ionized metals (Hellsten et al., 1998), partic-
ularly O VI, O VII, and O VIII. Recent Chandra observa-
tions have indeed confirmed that this low–redshift WHIM
exists and comprises a baryon content consistent with ex-
pectations (Nicastro et al., in preparation Nicastro et al.,
2005a,b).

Just as other galaxies are expected to form in the dens-
est “knots” of the cosmic web, we also expect to see
WHIM adjacent to, perhaps surrounding, our own Milky
Way. Indeed, X-ray spectra of several quasars show
likely ����� O VII absorption. The upper limit on the
O VII emission toward Mrk 421 found by Rasmussen et
al. (2003) indicates that this absorption system probably
has an extremely low density and is thus likely to be ex-
tragalactic. Additionally, other nearby low– and high–
ionization components may be associated with either the
WHIM itself or may represent gas from the WHIM that
has cooled and is now in the process of accreting onto
the Galaxy; for example, the high–velocity O VI absorp-
tion seen with FUSE along many quasar lines of sight
(Wakker et al., 2003) and neutral hydrogen high–velocity
clouds (H I HVCs).

2. THE DEBATE: WHIM OR CORONA?

The origin of the local O VII absorption, and in particular
its relation to the observed O VI, is still to a large degree
unknown. There is some evidence that these ions could
originate in a warm–hot Galactic corona: for example,
likely O VII absorption has been detected within 50 kpc
of the Galaxy by Wang et al. (2005). The observed deflec-
tion and stripping of the Magellanic clouds also lends cre-
dence to the existence of a low–density corona. Lower–
ionization absorption, such as that from Si IV and C IV, is
also seen at the same velocities as some O VI HVCs, in-
dicating that these O VI clouds, at least, may have lower
temperatures and higher densities than expected from the
WHIM.

However, there are also reasons to believe this absorption
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is tracing extended WHIM gas. High column densities of
O VI, O VII, and O VIII from the local IGM are predicted
by simulations to lie in certain directions (Kravtsov et al.,
2002). Furthermore, the mean velocity vector of the O VI
HVCs is highest in the local standard of rest and lowest
in the Local Group rest frame, indicating that their origin
could indeed be extragalactic (Nicastro et al., 2003). The
presence of O VII between the Galaxy and Large Magel-
lanic Cloud does not rule out an extragalactic origin for
the absorption in some directions since neither the Galac-
tic absorption or WHIM is necessarily homogeneous; ad-
ditionally, the WHIM is known to be homogeneous and
consist of a variety of temperature and density phases, so
some lower–ionization lines may be expected as well.

Thus, the questions – how are the local X-ray and UV
absorption components related to each other, which are
of Galactic origin, and which arise in the local WHIM?–
are still unanswered. The answers to these questions have
profound implications for both studies of galaxy forma-
tion and cosmology. We are now undertaking a program
to determine the distribution and properties of this local
hot gas and its ties to lower–ionization components, with
a focus on new and archival Chandra and FUSE data.
Here we present the first results of this study, an analy-
sis of the particularly high–quality Chandra and FUSE
spectra of the bright AGN Mrk 421 and Mrk 279.

3. THE MRK 421 SIGHTLINE

A full discussion of the Mrk 421 Chandra and FUSE
spectra, and the analysis thereof, can be found in
Williams et al. (2005); the following is a summary of the
main results.

3.1. Observations and measurements

The bright � � � � � � blazar Mkn 421 was observed dur-
ing two exceptionally high outburst phases for 100 ks
each as part of our Chandra–AO4 observing program:
one at ����� �
	������� � � � ��� � � 	�� erg s 	�� cm 	�� with the
Low Energy Transmission Grating (LETG) combined
with the ACIS-S array, and another at � �
� �
	������� � � � � �
� � 	�� erg s 	�� cm 	�� with the HRC-S array and LETG.
Each of these observations contains  ��� ��� counts per
resolution element at 21.6 Å. Additionally, another short
observation of Mkn 421 was taken with HRC/LETG (29
May 2004), providing another 170 counts per resolu-
tion element. These three spectra were combined over
the 10–60 Å range to improve the signal–to–noise ratio
(S/N  ��� at 21 Å with 0.0125 Å binning). The final
coadded spectrum of Mkn 421 is one of the best ever
taken with Chandra: it contains over � � � total counts
with �� � ��� counts per resolution element at 21.6 Å, pro-
viding a

���
detection threshold of �!  � mÅ ( "$# ��%&% �

� � � � �('*),+-	�� for an unsaturated line).

Using the CIAO fitting package Sherpa we initially mod-

Figure 1. FUSE spectrum of Mrk 421 near the O VI
doublet. The 1032 Å line is well–fit by a strong ab-
sorber at .  � km s 	�� and a much weaker component
at . �� � � km s 	�� (inset).

eled the continuum of Mkn 421 as a simple power law
with Galactic foreground absorption, excluding the 48–
57 Å HRC chip gap region. Metal abundances for the
Galactic gas were then artificially adjusted to provide a
better fit around the O 1 and C 1 K–edges near 23 Å and
43 Å respectively. This is not intended to represent actual
changes to the absorber composition, but rather to correct
uncertainties in the instrument calibration. After this fit
there were still some systematic uncertainties in the best–
fit continuum model; these were corrected with broad
( /10�243 � � � � �657� Å) Gaussian emission and absorp-
tion components until the modeled continuum appeared
to match the data upon inspection. Indeed, the residu-
als of the spectrum to the final continuum model have a
nearly Gaussian distribution, with a negative tail indicat-
ing the presence of narrow absorption lines (see Nicastro
et al., 2005a, Figure 8). We searched for narrow, unre-
solved (FWHM 8 � � �9� Å) absorption lines at known C,
N, O, and Ne transition wavelengths and used Gaussians
to measure the equivalent widths (or upper limits there-
upon) for all lines found. All in all, equivalent widths for
9 significantly detected absorption lines were measured
(including O VII K : , ; , and < ) and 4 upper limits calcu-
lated.

Mrk 421 was also observed for a total of 84.6 ks with
FUSE, providing a signal–to–noise ratio of 17 near the
O VI wavelength once all spectra are combined and
binned to  � � km s 	�� . This spectrum shows strong,
broad O VI absorption at .  � , most likely originating
in the Galactic thick disk, as well as a possible O VI HVC
at . �� � � km s 	�� (Figure 1).

3.2. Doppler parameters

To convert the measured equivalent widths to ionic col-
umn densities, we calculated curves of growth for each
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Figure 2. Mrk 421 column density and Doppler parame-
ter diagnostics for the O VII (top) and O VI (bottom) ab-
sorption, with each transition labeled. In the O VI panel,
the “a” and “b” curves are derived from the 1032 Å ab-
sorption equivalent width and FWHM, respectively.

absorption line over a grid of Doppler parameters ( � �
� ��5 � � � km s 	�� ) and column densities ( ����� "��	� ),+ 	�� �
� � � �65 � � � � ), assuming a Voigt line profile. Since the X-
ray lines are unresolved, � cannot be measured directly.
It can, however, be inferred from the relative strengths of
the three measured O VII K–series lines. These line ra-
tios by themselves are insufficient to determine the phys-
ical state of the O VII–absorbing medium since � and
" # ��% % are degenerate: the K : line saturation could be
due to high column density, low � , or a combination of
both. However, given an absorption line with a measured
equivalent width and known oscillator strength, the in-
ferred column density as a function of the Doppler param-
eter can be calculated. The measured equivalent width
(and errors) for each transition thus defines a region in the
" # ��% % 5 � plane. Since the actual value of " # ��% % is fixed,� and " # ��%&% can be determined by the region over which
the contours “overlap;” i.e. the range of Doppler parame-
ters for which the different transitions provide consistent
" # ��% % measurements.

Figure 2 (top panel) shows such � � contours for the three
measured O VII transitions. The K : and K ; tracks ap-
pear consistent at the � � level for � � 8
� 8 � � km s 	�� ,
while the overlap between the K : and K < tracks pro-
vides approximate 2

�
limits of ��� 8� 8�� � km s 	�� .

We thus assume a � � range of ��� 8�� 8 ��� km s 	�� .
It should be noted that Figure 2 also shows some over-
lap between the ��� and ��� at ��� � � km s 	�� ; however,
this solution is unlikely given the lower limit provided by
the ��� line. Moreover, � � � � km s 	�� implies a max-
imum temperature (assuming purely thermal motion) of������� � � � � � � � � K; such a low temperature is unlikely
to produce the observed strong high–ionization lines.

A similar analysis is not as effective when applied to the
strong O VI  � UV doublet (from the thick disk), since
these lines are only slightly saturated. The O VI  � 1032 Å
line is fully resolved by FUSE and relatively unblended,
so its Doppler parameter can be estimated much more ac-
curately using the measured line width and strength. In
an unsaturated absorption line, /10�243 � �"! ��# ��$ ��%�� � ;
however, the measured FWHM increases if the line is
saturated. We compensated for this by calculating Voigt
profile FWHMs on a grid of " # ��% and � , and determin-
ing the region consistent with the O VI  � 1032 Å FWHM
measurement of � � �'& � km s 	�� .
When the FWHM–derived contour is overlaid on the
" # ��% 5 � contour inferred from the equivalent width mea-
surement of the LV–O VI 1032 Å line, the two regions
overlap nearly orthogonally (Figure 2, bottom panel)
leading to a constraint of � (O VI  � ) � � � � � &(� � � km s 	�� .
This is more than

� �
higher than the Doppler param-

eter calculated for the O VII absorption, indicating that
the O VII and thick–disk O VI  � cannot arise in the same
gaseous phase. Also, at no value of the Doppler parame-
ter do the 1032 Å, 1037 Å, and O VI K : lines all produce
a consistent " # ��% measurement; in fact, the O VIK : col-
umn density is a factor of  � higher than that inferred
from the UV data. It is thus possible that the O VI UV
transition is being suppressed, perhaps by atomic physics
effects, in the absorbing medium and the � : line pro-
duces a more accurate representation of the true O VI col-
umn density; in the following analysis we consider both
possibilities.

3.3. Temperature and Density Constraints

The abundance ratios of metal ions (for example,
O VII/O VIII) are expected to vary with temperature as a
result of collisional ionization; additionally, as the den-
sity decreases to typical WHIM values (  � � 	�' cm 	*) ),
photoionization from the extragalactic ionizing back-
ground plays an increasingly important role. We used
Cloudy version 90.04 (Ferland, 1996) to calculate relative
ionic abundances for all measured elements over a grid of�+�,� � and �+�,�.-0/ . As with the Doppler parameter and col-
umn density diagnostics described above, any measured
ion column density ratio then produces a “track” of con-
sistency in the ����� � 5 �+�,�.-0/ plane, and (assuming the
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Figure 3. � � constraints on the gas temperature and den-
sity toward Mrk 421, derived from oxygen ion ratios as
labeled. The dashed line indicates the upper limit on the
temperature from the O VII Doppler parameter.

ions arise in the same gaseous phase) the overlap between
such “tracks” can place constraints on the gas tempera-
ture and density.

Column density ratios between different ions of the same
element (e.g. O VI, O VII, and O VIII) produce the
strongest constraints since these ratios are independent of
the relative metal abundance in the gas Figure 3 shows
such constraints derived from these oxygen abundance
ratios. If the O VI K : line accurately traces the O VI col-
umn density of this medium, then the contours overlap
at - /  � � 	�' cm 	�) . Coupled with the total oxygen col-
umn density and assuming O/H of 0.3 times Solar, this
implies that the absorber has a radial extent of  � Mpc
and a mass consistent with the expected baryonic mass of
the Local Group.

On the other hand, if the O VI K : line does not correctly
measure "$# ��% , then this absorption can in principle arise
in a higher–density Galactic medium with ����� �  � � �
(as derived from the O VIII/O VII ratio with collisional
ionization as the dominant process; Figure 3). Even in
this case, a low–density (extragalactic) medium is fully
consistent with the data. Furthermore, the contour de-
rived from the measured Ne/O abundance (not shown in
the figure) is consistent in the low–density regime if the
Ne/O ratio is significantly supersolar, as has been ob-
served in other Galactic and extragalactic absorption sys-
tems.

4. THE MRK 279 SIGHTLINE

A full discussion of our analysis of the Mrk 279 Chan-
dra and FUSE spectra will appear in a forthcoming paper
(Williams et al. 2006, in preparation).

Figure 4. Velocity plot of the O VII and O VI absorption
seen in the Mrk 279 Chandra and FUSE spectra respec-
tively. The centroids of the O VII and high–velocity O VI
lines differ by  � � � � .

4.1. Observations and Measurements

While Mrk 421 was observed for relatively short periods
during bright outburst phases, few other bright sources
flare this dramatically. We thus searched the Chan-
dra archive for long–duration LETG observations of rel-
atively bright background quasars. One such source,
Mrk 279 (an AGN at � � � � � � ) was observed during
seven periods in May 2003 for a total exposure time
of 340 ks. These seven observations were coadded for
a final (unbinned) signal–to–noise ratio of �"���  � � �
near 22Å. As with the Mrk 421 spectrum, we again used
Sherpa to fit a power law and foreground Galactic absorp-
tion to the spectrum over � � 5 � ��� Å band (excluding
the ��� 5 � � � � Å and � � � � 5 � � � � Å chip gap regions),
leaving the relative Galactic metal abundances as free pa-
rameters in order to produce a better fit around the ab-
sorption edges. The remaining broad residuals were were
corrected by including four broad Gaussians in the source
model.

Although several strong lines such as C VI, O VII, and
N VII are apparent at the blazar redshift ( ��� � � � � ),
only O VII K :�� � � � � � � is unambiguously detected at� � � � � � & � � � � � Å ( . ����� � & � � � km s 	�� ) with an equiv-
alent width of � � � � & � � � mÅ. Upper limits are mea-
sured for the O VII K ; and O VIII lines. The Chandra
LETG wavelength scale contains intrinsic random errors
of approximately � � � � Å, on the order of the statistical er-
ror on the O VII position measurement, but these errors
should not vary with time (J. J. Drake, private commu-
nication). To check the absolute wavelength scale near
the O VII line, we retrieved the nearest HRC–S/LETG
calibration observation of the X-ray bright star Capella
(observation 3675, taken on 2003 September 28) from
the Chandra archive and reprocessed the data in ex-
actly the same manner as the Mrk 279 data. The wave-
length of the strong O VII emission line was found to be
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Figure 5. Column density and velocity dispersion diag-
nostics for the Mrk 279 O VII absorption. The shaded re-
gion is derived from the � � O VII K : equivalent width
limits, the dashed line is from the O VII K ; � � upper
limit, and the 95% joint confidence interval is depicted
by the dark hatched region.

� � � � � � & � � � � � Å or � � &
� � km s 	�� , which is consistent
with the � � � km s 	�� radial velocity of Capella as listed
in the SIMBAD database. Thus, any systematic effects on
the measured velocity of the O VII absorption are likely
to be insignificant compared to the statistical error.

Mrk 279 was also observed with FUSE for a total expo-
sure time of 224 ks (though only 177 ks of these data
were usable); all calibrated data from these observations
were retrieved and coadded in the same manner as the
Mrk 421 FUSE data. This spectrum also shows strong
Galactic thick–disk O VI absorption at .  � , but unlike
the Mrk 421 spectrum, the high–velocity O VI is strong
and clearly separated from the thick–disk O VI at . �5 �*� �	&�� � � km s 	�� . Figure 4 shows the O VII and O VI
absorption systems plotted against velocity. Although the
error on the O VII velocity is large, it is nonetheless sig-
nificantly higher than the O VI HVC velocity by about� � � � . Thus, a direct association between the O VI HVC
and O VII can be ruled out with reasonably high confi-
dence.

4.2. Doppler parameters

In the Mrk 421 Chandra spectrum, three absorption lines
from the O VII K-series were strongly detected. While
a similar curve–of–growth analysis can be performed for
Mrk 279, placing limits on "$# ��%&% and � is more difficult
because only the O VII K : line is strongly detected; only
an upper limit can be measured for the K ; line. Since
the absorption line properties for various column densi-
ties and Doppler parameters are known, limits on these
quantities can be determined using the Chandra spectrum
itself. For each point in the " # ��%&% 5 � plane, O VII K : and
K ; absorption lines with the calculated �  and FWHM

values were added to the best–fit continuum model, and
the � � statistic calculated using the “goodness” command
in Sherpa. Since best–fit K ; line amplitude is zero, the
unsaturated case (assuming the O VII line ratio constraint
�  ! � ; $ � � � � ��� �  ! � : $ ) produces the best fit to the
data. The minimum � � value was taken from such a fit,
and ��� � � � � ! "$# ��%&%�� � $ 5 � ��	� 
 calculated for every
point. The 95% confidence interval ( ��� � 8 � ) calcu-
lated with this method is shown in Figure 5 (as well as
the " # ��%&% 5 � contours derived from each transition);
at this confidence level all Doppler parameters between� � 8 � 8 ��� km s 	�� are ruled out.

Doppler parameters for the O VI absorption were calcu-
lated in the same manner as for Mrk 421. In this case,
however, two Gaussians are necessary to fit the low–
velocity (thick–disk) O VI. The derived velocity disper-
sions are � � � � � �*& � � � , � � � � & � � � , and

� � � �*& � � � for the
broad Galactic, narrow Galactic, and high–velocity O VI
components respectively (producing the best–fit model
shown in Figure 4). These are all strongly inconsistent
with the limits found for the O VII velocity dispersion,
indicating that the O VII is not related to any of the O VI
components. Even if the low–velocity O VI is considered
to be one non–Gaussian component and its width is mea-
sured directly from the spectrum, its Doppler parameter
is �  � � km s 	�� , barely consistent with the 95% lower
limit on the O VII � value.

4.3. Temperature and Density Constraints

An upper limit on the temperature of the absorbing
medium of ����� � 8 � � � can be derived from the
O VIII/O VII column density. Since the O VII absorption
does not appear to be associated with any of the O VI
components, finding a lower limit on the temperature is
more difficult. We thus assume that the O VI absorption
from the O VII–bearing gas is undetected in the FUSE
spectrum, and exists as a very broad ( � 	 � � km s 	�� ) ab-
sorption line superposed on the narrower detected com-
ponents. Limits on the O VI column density associated
with the O VII were thus calculated by placing such an
absorption line in the FUSE spectrum model, one with� � � � � km s 	�� and one with � � � ��� km s 	�� , and cal-
culating the corresponding O VI/O VII

� 5 - / constraint
(shown in Figure 6.

The lower limit on temperature derived from the
O VI/O VII upper limit is highly dependent on � ; in fact,
for � � � ��� km s 	�� the two oxygen line ratios are incon-
sistent with each other for all temperatures and densities.
Thus, if the O VII is associated with an undetected broad
O VI line, the velocity dispersion of the absorption must
be very high (at least �  � ��� km s 	�� ). Such a high ve-
locity dispersion, if purely thermal, implies temperatures
of
�  � �� K, which is ruled out by the non–detection

of O VIII absorption. This absorber must therefore be
broadened primarily by nonthermal processes, perhaps
due to the velocity shear of infalling hot gas associated
with HVC Complex C.
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Figure 6. Mrk 279 temperature and density con-
straints from the O VIII/O VII and O VI/O VII upper lim-
its, assuming a putative O VI absorption line with � �
� � � km s 	�� (top) and � � � ��� km s 	�� (bottom).

5. CONCLUSIONS

We have detected strong � � � X-ray absorption toward
both Mrk 421 and Mrk 279. Both absorption systems
appear to exhibit similar column densities and consistent
temperature and density limits (albeit with large errors).
Additionally, in both cases the detected X-ray absorp-
tion does not appear to arise in the same phase as the
low– or high–velocity O VI absorption seen in the FUSE
spectra, indicating that the O VII absorption likely comes
from either the local WHIM or a heretofore undiscovered
hot Galactic component. The Doppler parameters of the
Mrk 421 and Mrk 279 absorption are highly inconsistent
with each other, perhaps indicating that these two systems
originate from entirely different physical processes.
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