THE UV-TO-X-RAY EMISSION RATIO IN AGN: LUMINOSITY DEPENDENCE AND NO REDSHIFT EVOLUTION

I. Strateva1, A. Steffen1, W. Brandt1, D. Alexander2, A. Koekemoer3, B. Lehmer1, D. Schneider1, and C. Vignali4

1Pennsylvania State University, 525 Davey Lab., University Park, PA 16802, USA
2Institute of Astronomy, Madingley Road, Cambridge CB3 0HA, UK
3Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218, USA
4Dipartimento di Astronomia, Via Ranzani 1, 40127 Bologna, Italy

ABSTRACT

We compiled a relatively homogeneous sample of 332 optically-selected, radio-quiet, unabsorbed AGN with the largest redshift range coverage (0 < z < 6) and X-ray detection fraction to date (88%). Using partial-correlation analysis, we confirm that the soft X-ray emission from AGN is strongly correlated with their UV emission (partial Kendall’s $\tau = 0.52$ at 15.4σ) despite the dependence of luminosity on redshift in flux-limited samples. The UV-to-X-ray emission ratio, $\alpha_{\text{ox}} \equiv -0.384 \log \left(\frac{L_{2500 \text{\AA}}}{L_{2\text{keV}}} \right)$, is related to the AGN luminosity (in the sense that less luminous AGN emit more soft X-rays per unit UV), but remains unchanged with cosmic time.

Key words: active galactic nuclei; X-ray/UV/optical emission of AGN; AGN evolution.

1. INTRODUCTION

Precise knowledge of the relationship between UV and X-ray emission in Active Galactic Nuclei (AGN) is important for testing energy generation models of AGN, deriving bolometric corrections, identifying X-ray weak AGN, and for proper comparison between the AGN evolution scenarios derived independently in the UV and X-ray bands.

1.1. Sample

We assembled a sample of 332 optically-selected, radio-quiet (RQ) AGN with correspondingly deep soft X-ray coverage. The largest subsample (155 objects) contains Sloan Digital Sky Survey (SDSS) AGN serendipitously observed in medium-deep \textit{ROSAT} PSPC exposures. In order to increase the coverage of the luminosity-redshift plane without sacrificing X-ray detection fraction, which is crucial for determining the relation between UV and X-ray emission, we include subsamples of 52 COMBO-17 AGN with $R < 23$ (Wolf et al., 2003; Steffen et al., 2006), 46 BQS AGN with $M_B < -23$ (Brandt et al., 2000), 25 Seyfert 1 galaxies from Walter & Fink (1993), and 54 high-redshift AGN (Steffen et al., 2006). Optical/UV spectra were used, when available, to subtract the host-galaxy continua and to identify and remove AGN with broad UV absorption lines (BALs). We explored the effect of any remaining BALs through Monte-Carlo simulations and found it statistically insignificant. By removing the radio-loud (RL) and BAL AGN we ensure that our observations measure the intrinsic rest-frame UV and soft X-ray emission of AGN, unaffected by nuclear absorption or jet emission. Figure 1 shows the luminosity-redshift plane coverage of the full sample. To our knowledge, this is the cleanest (controlling for RL, BAL, host-galaxy contribution, etc.) large sample of optically-selected AGN with the highest X-ray detection fraction (88%) to date.

1.2. Statistical Methods

While our sample provides good coverage of the luminosity-redshift plane, both the UV and X-ray luminosities are still correlated with redshift. To measure the strengths of correlations between $L_{2500 \text{\AA}}$, $L_{2\text{keV}}$, α_{ox}, and redshift, we use partial-correlation methods, which allow us to determine the correlation between any two variables while controlling for the effects of a third variable. We use rank-correlation coefficient analysis, developed by Akritas & Siebert (1996), which also accounts for the presence of upper/lower limits.

To obtain the linear-regression parameters of the correlations, we use the Astronomy Survival Analysis package (ASURV; Isobe et al., 1986). We used Monte Carlo simulations to confirm the robustness of the present correlations (see La Franca et al., 1995; Strateva et al., 2005).
2. RESULTS

- We confirm that rest-frame soft X-ray and UV emission of AGN are strongly correlated (partial Kendall’s \(\tau = 0.52 \), significant at 15.4\(\sigma \), see Figure 2).

- The slope of the \(\log(L_{2500\text{\AA}}) - \log(L_{2\text{keV}}) \) correlation is less than one, which means that less luminous AGN emit relatively more X-ray emission (in comparison with their UV emission) than their more luminous counterparts. The best bisector line fit for the \(\log(L_{2500\text{\AA}}) - \log(L_{2\text{keV}}) \) relation is: \(\log(L_{2\text{keV}}) = 0.73 \log(L_{2500\text{\AA}}) + 4.40 \). To estimate the X-ray emission from the UV emission, the linear regression minimizing the X-ray residuals must be used: \(\log(L_{2\text{keV}}) = 0.64 \log(L_{2500\text{\AA}}) + 6.87 \). Conversely to obtain the best UV emission estimate from X-ray data, the linear regression minimizing the UV residuals must be used: \(\log(L_{2\text{keV}}) = 0.82 \log(L_{2500\text{\AA}}) + 1.71 \).

- The primary dependence of \(\alpha_{\text{ox}} \) is on \(\log(L_{2500\text{\AA}}) \): \(\alpha_{\text{ox}} = -0.14 \log(L_{2500\text{\AA}}) + 2.64 \), significant at 13.6\(\sigma \). There is no dependence on redshift (1.2\(\sigma \)).

- We find a weaker, but significant (3.1\(\sigma \)) correlation between \(\alpha_{\text{ox}} \) and \(\log(L_{2\text{keV}}) \).

- Using the \(\alpha_{\text{ox}} \) residuals as a function of redshift, we estimate that the ratio of UV to soft X-ray emission of AGN has not changed by more than 30\% since the Universe was \(\sim \)1 Gyr old.

For more detailed results, we refer the reader to Steffen et al. (2006) and Strateva et al. (2005).

ACKNOWLEDGMENTS

We gratefully acknowledge support from NASA LTSA grant NAG5-13035 (I.S. and W.N.B.), CXC grant G04-5157A (A.T.S., W.N.B., B.D.L., and D.P.S), NSF CAREER award AST-9983783 (A.T.S. and W.N.B.), and MIUR COFIN grant 03-02-23 (C.V.).

REFERENCES