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ABSTRACT

We compiled a relatively homogeneous sample of 332
optically-selected, radio-quiet, unabsorbed AGN with
the largest redshift range coverage (0 < z < 6) and
X-ray detection fraction to date (88%). Using partial-
correlation analysis, we confirm that the soft X-ray
emission from AGN is strongly correlated with their
UV emission (partial Kendall’sτ = 0.52 at 15.4σ)
despite the dependence of luminosity on redshift in
flux-limited samples. The UV-to-X-ray emission ratio,
αox ≡ −0.384 log[L2500Å/L2 keV], is related to the AGN
luminosity (in the sense that less luminous AGN emit
more soft X-rays per unit UV), but remains unchanged
with cosmic time.
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1. INTRODUCTION

Precise knowledge of the relationship between UV and
X-ray emission in Active Galactic Nuclei (AGN) is im-
portant for testing energy generation models of AGN,
deriving bolometric corrections, identifying X-ray weak
AGN, and for proper comparison between the AGN evo-
lution scenarios derived independently in the UV and
X-ray bands.

1.1. Sample

We assembled a sample of 332 optically-selected, radio-
quiet (RQ) AGN with correspondingly deep soft X-ray
coverage. The largest subsample (155 objects) con-
tains Sloan Digital Sky Survey (SDSS) AGN serendip-
itously observed in medium-deepROSATPSPC expo-
sures. In order to increase the coverage of the luminosity-

redshift plane without sacrificing X-ray detection frac-
tion, which is crucial for determining the relation be-
tween UV and X-ray emission, we include subsamples of
52 COMBO-17 AGN withR < 23 (Wolf et al., 2003;
Steffen et al., 2006), 46 BQS AGN withMB < −23
(Brandt et al., 2000), 25 Seyfert 1 galaxies from Wal-
ter & Fink (1993), and 54 high-redshift AGN (Steffen et
al., 2006). Optical/UV spectra were used, when avail-
able, to subtract the host-galaxy continua and to iden-
tify and remove AGN with broad UV absorption lines
(BALs). We explored the effect of any remaining BALs
through Monte-Carlo simulations and found it statisti-
cally insignificant. By removing the radio-loud (RL) and
BAL AGN we ensure that our observations measure the
intrinsic rest-frame UV and soft X-ray emission of AGN,
unaffected by nuclear absorption or jet emission. Figure 1
shows the luminosity-redshift plane coverage of the full
sample. To our knowledge, this is the cleanest (control-
ling for RL, BAL, host-galaxy contribution, etc.) large
sample of optically-selected AGN with the highest X-ray
detection fraction (88%) to date.

1.2. Statistical Methods

While our sample provides good coverage of the
luminosity-redshift plane, both the UV and X-ray lumi-
nosities are still correlated with redshift. To measure the
strengths of correlations betweenL2500Å , L2keV, αox, and
redshift, we use partial-correlation methods, which allow
us to determine the correlation between any two vari-
ables while controlling for the effects of a third variable.
We use rank-correlation coefficient analysis, developed
by Akritas & Siebert (1996), which also accounts for the
presence of upper/lower limits.

To obtain the linear-regression parameters of the correla-
tions, we use the Astronomy Survival Analysis package
(ASURV; Isobe et al., 1986). We used Monte Carlo sim-
ulations to confirm the robustness of the present correla-
tions (see La Franca et al., 1995; Strateva et al., 2005).
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Figure 1. Distribution of rest-frame UV monochromatic
luminosity with redshift. The inclusion of both large-
area and deep, pencil-beam samples allows us to break
the strong dependence of luminosity on redshift, charac-
teristic of flux-limited samples without compromising the
X-ray detection fraction. X-ray upper limits are indicated
with solid symbols in this plot only.

Figure 2. The soft X-ray and UV monochromatic
luminosities are strongly correlated (partial Kendall’s
τ = 0.52 with 15.4σ significance) with slope less than
one. Symbols are as in Figure 1, except for the X-ray up-
per limits which are indicated with arrows. The solid line
is the best-fit bisector line, with parameters given above
and residuals plotted below; the two dashed lines are
the best-fit linear regressions minimizing the x- or y-axis
residuals.

2. RESULTS

– We confirm that rest-frame soft X-ray and UV emis-
sion of AGN are strongly correlated (partial Kendall’s
τ = 0.52, significant at 15.4σ, see Figure 2).

– The slope of thelog(L2500Å)–log(L2 keV) correlation is
less than one, which means that less luminous AGN emit
relatively more X-ray emission (in comparison with their
UV emission) than their more luminous counterparts.
The best bisector line fit for thelog(L2500Å)–log(L2 keV)
relation is: log(L2 keV) = 0.73 log(L2500Å) + 4.40. To
estimate the X-ray emission from the UV emission, the
linear regression minimizing the X-ray residuals must be
used:log(L2 keV) = 0.64 log(L2500Å)+6.87. Conversely
to obtain the best UV emission estimate from X-ray data,
the linear regression minimizing the UV residuals must
be used:log(L2 keV) = 0.82 log(L2500Å) + 1.71.

– The primary dependence ofαox is on log(L2500Å):
αox = −0.14 log(L2500Å) + 2.64, significant at 13.6σ.
There is no dependence on redshift (1.2σ).

– We find a weaker, but significant (3.1σ) correlation be-
tweenαox andlog(L2 keV).

– Using theαox residuals as a function of redshift, we
estimate that the ratio of UV to soft X-ray emission of
AGN has not changed by more than 30% since the Uni-
verse was∼1 Gyr old.

For more detailed results, we refer the reader to Steffen
et al. (2006) and Strateva et al. (2005).
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