N E E R

Neutron star Interior Composition ExploreR

GSFC

NICER Software Jeremy Hare (NASA/GSFC/CRESST/CUA) on behalf of the NICER team

MIT KAVLI

MOOG

Keith Gendreau Pl

Zaven Arzoumanian Deputy Pl

Craig Markwardt Software/Calibration

Elizabeth Ferrara NICER GOF

Accessing data
 NICER software
 Spectral extraction
 Dealing with Background
 Light curve extraction
 Things to look out for

HEASOFT

Patches for existing 6.31 installations:

• For users who already have HEASoft 6.31, please see our 6.31.1 patch page for information about updating your installation to 6.31.1.

STEP 1 - Select the type of software:

SOURCE CODE DISTRIBUTION (Recommended):

Please note that the source code distribution is recommended - *particularly for Linux users* - due to portability issues that can affect the pre-compiled binaries. Also, a source code distribution is **required** for users who wish to use **local models in XSPEC / PyXspec**.

○ Source Code

PRE-COMPILED BINARY DISTRIBUTIONS (May experience portability issues):

Please note that the pre-compiled binaries are **not recommended** - *particularly for Linux users* - due to <u>Perl portability issues</u>. Also, note that users who wish to use **local models in XSPEC** or **PyXspec** must get the source code distribution instead. **Pre-compiled binaries for Silicon Macs are currently unavailable but may be added at** a later date.

- PC Ubuntu Linux 20.04 Mac Intel Darwin 22.x (OS 13.x.x)
- PC Fedora Linux 36 Mac Intel Darwin 21.x (OS 12.x.x)
- PC Red Hat Enterprise Linux 8.5
- O PC Scientific Linux 7.9

STEP 2 - Download the desired packages:

Reset

Submit

Selecting an individual mission package will automatically select a set of recommended general-use tools.

Mission-Specific Tools Einstein EXOSAT CGRO HEAO-1 Hitomi INTEGRAL IXPE MAXI **NICER** NuSTAR OSO-8 ROSAT Suzaku Swift U <u>Vela</u> General-Use FTOOLS Attitude 🗹 Caltools 🗹 Futils Fimage HEASARC HEASim HEASPtools HEATools HEAGen D FV Time XANADU Zimage Xronos Xspec * ☐ XSTAR

CALDB

https://heasarc.gsfc.nasa.gov/docs/heasarc/caldb/caldb_supported_missions.html

ĺ	NICER					
		ХТІ	October 1, 2022	<u>ascii</u> list	Tar file (61 MB)	Index File Summary
10						

export GEOMAG_PATH=/home/myname/geomag

Geomag path must be set for background models, unique to NICER

New Workflow: Streamlined

NICER + SEXTANT

AASA - GSFC.

https://heasarc.gsfc.nasa.gov/docs/archive.html

NASA	National Ac Goddard Spa Sciences and Exp	eronautics and ace Flight Center	Space Adminis	Gu HEAS Qu	GO Search HEASARC website [Advanced Search] HEASARC Quick Links Quick Links V				
HEASARC Home	Observatories	Archive	Calibration	Software	Tools	Studen	ts/Teachers/Public		
NASA's I	HEASA	RC: Arc	hive	Vie	What missions and catalog Recent X-Ray Massions ABCA and assions and assions and assions and assions and assions and assions assi	s do you want to search? sepo5AX (SA) SAMANawton (SSA) SSB	waster (CXC)	BOSAL Einstein DSOS	
Xamin E	Browse ASC	l Catalogs FTF	P Area SkyVi	ew ARM	/RPS VC	D DataSc	ope Other Are	chives	
HEASARC Data • Xamin Int Xamin Web Inte Our faster and m Xamin Batch In	Access erfaces hore powerful access terface <u>Downloa</u>	Select an i s to HEASARC data	nterface or start usin	g our keyword s	Annues of the Annuese	mes,			
Use Xamin from • Browse Ir Our full-featured Browse Table Ir Listing of all tabl Browse Correlation of me Browse Notificat Get notified whe Use Xamin if you	the command line of terfaces interface dex es in the HEASARC tion of 2 Tables ore than 2 tables is a ation Service n new data is availa u wish to monitor an	database			Try ROSAT 3c273 1d to chanmaster bil>80 st Observations data near t Note: For more than one mission name, use quote space.(e.g., 'ar lac'). More information and ex ASCA: Chandra: HST: Blanck:	apples b get ROSAT data within (atus='archived' to get i he north galactic pole. te target or when using ar is around targets that have amples BEPPOSAX: Fermi: INTEGRAL: POSAT:	one degree of 3c273 or archived Chandra vy qualifier other than a ve embedded white CGRO:		

HEASARC Home	Observatories	Archive Calibra	tion Softwa	re	Tools	Students/Teachers/Public
Archive		HE	EASARC Browse			
Other Browse inte Notification Service	erfaces: ce <u>Batch Correlation Inde</u>	ex of All Tables				Query File And Session Uploads
Start Searc	h Reset Detaile	ed Mission/Catalog Searc	١			
1. Do you wa (If you want to se	nt to search around a posi arch on parameters other than obje	tion ? act name or coordinates, select "Det	ailed Mission/Catalog Search			
	Object Name or Coordina	ates: MAXI J1820+070	and/or	Select	Choose File	No file chosen
		e.g. Cyg X-1 or 12 00 00, 4 Cyg X-2; 12.235, 15.345 (No semicolons (;) to separate m names and/or coordinate pai	12 6 or te use of ultiple object rs.)	File should conta separated by ser	nin objects and/or co nicolons.	poordinate pairs one per line or
	Coordinate Sys	<u>tem:</u> J2000 ~				
	Search Rad	<u>lius:</u> Default	arcmin 、	·		
	wah hu data?	Default uses the optimum ra-	dius for each catalog searche	d.		
and/or sea	Observation D:	ates		bimmiss or MID:		
		Not all tables have observati multiple dates/ranges with se 10-18).	on dates. For those that do, t micolons (;). Range operator	he time portion of the is '' (e.g. 1992-12	e date is optional -31; 48980.5; 1995	Times are always in UTC. Separate -01-15 12:00:00; 1997-03-20 2000-
2. What miss	ions and catalogs do you	want to search? (Bold text i	ndicates mission is acti	ve)		
□ <u>Most Re</u>	equested Missions					
Cha	ndra [CXC,CSC]	Ermi	HaloSat		🗌 <u>Hitomi</u>	
	[MSFC]	□ MAXI [JAXA]	✓ <u>NICER</u>		D <u>NuSTA</u>	R [Caltech]
	<u>AT</u>	□ <u>RXTE</u>	Suzaku		Swift	
□ <u>wm</u> /	AP	XMM-Newton [XSA]				
Other X	-Ray and EUV Missions					
Ariel	V	ASCA	BBXRT/Astro-1		Beppos	SAX
	ernicus	Einstein	EUVE [MAST]			<u>NT</u>
Ging	a	□ <u>HEAO 1</u>	□ <u>Kvant</u>		□ <u>oso</u> 8	
	3	SRG/eROSITA [MPE]	Uhuru		Uela 5E	3
Other G	amma-Ray Missions					

NICER Master Catalog (nicermastr) Search radius used: 15.00' **Bulletin**

	Services	<u>name</u> ↓↓介	<mark>───</mark>	_ <u>dec</u> ↓介	time ↓☆	obsid	exposure ↓↑↑ [s]	processing status	processing date	public date	obs type	<u>Search Offset</u> ↓↑↑ ['] from (target)
	ORNSDB	MAXI_J1820+070	18 20 21.89	+07 11 06.5	2018-03-24 23:35:38.00	1200120110	22132.43531	VALIDATED	2018-04-14 09:06:54	2018-04-30	DDT_TOO	0.018 (MAXI J1820+070)
€. 🗆	ORNSDB	MAXI_J1820+070	18 20 21.91	+07 11 06.7	2018-03-22 00:34:59.00	1200120107	17859.76112	VALIDATED	2018-04-14 04:00:28	2018-04-30	DDT_TOO	0.013 (MAXI J1820+070)
€. 🗆	ORNSDB	MAXI_J1820+070	18 20 21.91	+07 11 06.6	2018-03-26 00:16:49.00	1200120111	17819.20307	VALIDATED	2018-04-14 14:04:21	2018-04-30	DDT_TOO	0.014 (MAXI J1820+070)
€. 🗆	ORNSDB	MAXI_J1820+070	18 20 21.98	+07 11 05.5	2018-06-28 04:29:40.00	1200120189	16706.71323	VALIDATED	2018-07-02 21:33:13	2018-07-12	DDT_TOO	0.031 (MAXI J1820+070)
€ 🗆	ORNSDB	MAXI_J1820+070	18 20 21.74	+07 11 05.6	2018-03-26 23:50:00.00	1200120112	15183.90618	VALIDATED	2018-04-14 17:03:59	2018-04-30	DDT_TOO	0.056 (MAXI J1820+070)
€ 🗆	ORNSDB	MAXI_J1820+070	18 20 21.94	+07 11 05.5	2018-03-24 00:36:00.00	1200120109	12975.48074	VALIDATED	2018-04-16 22:23:37	2018-04-30	DDT_TOO	0.030 (MAXI J1820+070)
€. 🗆	ORNSDB	MAXI_J1820+070	18 20 21.86	+07 11 05.8	2019-03-24 00:10:21.00	2200120310	12001.00000	VALIDATED	2019-04-06 00:11:12	2019-04-07	DDT_TOO	0.032 (MAXI J1820+070)
۹. 🗆	ORNSDB	MAXI_J1820+070	18 20 22.15	+07 11 08.3	2018-04-16 01:37:17.00	1200120130	10618.55159	VALIDATED	2018-04-25 04:20:17	2018-04-30	DDT_TOO	0.055 (MAXI J1820+070)
€ 🗆	ORNSDB	MAXI_J1820+070	18 20 21.86	+07 11 05.8	2018-03-31 08:28:18.00	1200120116	9926.57193	VALIDATED	2018-04-17 00:47:00	2018-04-30	DDT_TOO	0.032 (MAXI J1820+070)
۹. 🗆	ORNSDB	MAXI_J1820+070	18 20 21.96	+07 11 07.4	2018-03-13 23:56:12.00	1200120103	9508.00000	VALIDATED	2018-03-19 00:14:19	2018-03-28	DDT_TOO	0.005 (MAXI J1820+070)
0	ORNSDB	MAXI_J1820+070	18 20 21.94	+07 11 05.7	2018-04-02 00:37:18.00	1200120118	9276.43457	VALIDATED	2018-04-14 21:47:46	2018-04-30	DDT_TOO	0.027 (MAXI J1820+070)
۹. 🗆	ORNSDB	MAXI_J1820+070	18 20 22.01	+07 11 05.9	2019-02-08 06:58:00.00	1200120314	8834.54956	VALIDATED	2019-02-15 07:15:29	2019-02-22	DDT_TOO	0.028 (MAXI J1820+070)
0	ORNSDB	MAXI_J1820+070	18 20 21.82	+07 11 06.0	2019-03-27 00:51:20.00	2200120313	8798.00000	VALIDATED	2019-04-06 03:21:09	2019-04-10	DDT_TOO	0.038 (MAXI J1820+070)
€ 🗆	ORNSDB	MAXI_J1820+070	18 20 21.98	+07 11 03.8	2018-04-17 00:44:57.00	1200120131	7340.77045	VALIDATED	2018-04-25 06:32:44	2018-05-01	DDT_TOO	0.058 (MAXI J1820+070)
€ 🗆	ORNSDB	MAXI_J1820+070	18 20 21.84	+07 11 06.2	2019-03-26 00:06:42.00	2200120312	7306.00000	VALIDATED	2019-04-06 02:19:00	2019-04-09	DDT_TOO	0.031 (MAXI J1820+070)
۹. 🗆	ORNSDB	MAXI_J1820+070	18 20 21.89	+07 11 06.5	2019-03-20 00:21:10.00	2200120306	6973.00000	VALIDATED	2019-03-24 07:53:53	2019-04-03	DDT_TOO	0.019 (MAXI J1820+070)
€ 🗆	ORNSDB	MAXI_J1820+070	18 20 22.13	+07 10 59.8	2018-04-21 23:35:18.00	1200120134	6963.77640	VALIDATED	2018-04-27 20:42:21	2018-05-06	DDT_TOO	0.133 (MAXI J1820+070)
€ □	ORNSDB	MAXI_J1820+070	18 20 22.06	+07 11 05.1	2018-04-25 00:34:34.00	1200120137	6938.44332	VALIDATED	2018-05-02 22:28:41	2018-05-09	DDT_TOO	0.046 (MAXI J1820+070)
€ 🗆	ORNSDB	MAXI_J1820+070	18 20 21.98	+07 11 06.6	2018-03-22 23:43:18.00	1200120108	6764.75746	VALIDATED	2018-03-28 01:49:12	2018-04-06	DDT_TOO	0.016 (MAXI J1820+070)
0	ORNSDB	MAXI_J1820+070	18 20 22.75	+07 11 09.4	2018-05-22 05:36:12.00	1200120156	6683.97869	VALIDATED	2018-05-27 00:44:22	2018-06-05	DDT_TOO	0.204 (MAXI J1820+070)
€ 🗆	ORNSDB	MAXI_J1820+070	18 20 22.15	+07 11 11.4	2018-03-12 13:51:20.00	1200120101	6496.00000	VALIDATED	2018-03-16 22:42:40	2018-03-26	DDT_TOO	0.086 (MAXI J1820+070)
۹. 🗆	ORNSDB	MAXI_J1820+070	18 20 21.98	+07 11 05.2	2018-04-04 00:30:01.00	1200120120	6486.60787	VALIDATED	2018-04-10 02:13:20	2018-04-18	DDT_TOO	0.036 (MAXI J1820+070)
€ 🗆	ORNSDB	MAXI_J1820+070	18 20 21.89	+07 11 08.2	2018-05-05 05:45:40.00	1200120145	6405.78467	VALIDATED	2018-05-09 04:52:25	2018-05-19	DDT_TOO	0.020 (MAXI J1820+070)
€ 🗆	ORNSDB	MAXI_J1820+070	18 20 21.86	+07 11 07.2	2018-03-15 00:36:04.00	1200120104	6235.00000	VALIDATED	2018-03-19 20:18:45	2018-03-29	DDT_TOO	0.020 (MAXI J1820+070)
0	<u>O R N S D B</u>	MAXI_J1820+070	18 20 22.06	+07 11 01.7	2019-04-14 17:26:03.00	2200120323	6062.00000	VALIDATED	2019-04-29 18:59:01	2019-04-28	DDT_TOO	0.097 (MAXI J1820+070)
	· ·	1	1		1		ı I.					• • • • • •

Select all products for all rows

NICER Master Catalog (nicermastr) FTOOLS

name	ra	dec	time	obsid	exposur	e processing	_status	processing	date	public_	date	obs_	type
MAXI_J1820+070	18 20 21.89	+07 11 06.5	2018-03-24 23:35:38.00	1200120110	22132.435	531 VALIDATED		2018-04-14 0	9:06:54	2018-0	4-30		
Select all products in this row													
Full Observati	ion Datase	et											
🗹 Auxiliary Fil	les (auxil)		DIRECTOR	<u>Y</u> 619	99 kB up	dated: 2018-	05-01	08:44:36					
🗹 Full Observ	ation Data	set (1200	120110) <u>DIRECTOR</u>	Y 281280	53 kB up	dated: 2018-	05-01	08:56:53					
🗹 Log Files (le	og)		DIRECTOR	<u>Y</u> 3	19 kB up	dated: 2018-	05-01	08:56:53					
🗹 XTI All Data	a (xti)		DIRECTOR	Y 280657	35 kB up	dated: 2018-	05-01	08:49:39					
🗹 XTI Cleane	d Data (ev	ent_cl)	DIRECTOR	Y 207471	58 kB up	dated: 2018-	05-01	08:54:07					
🗹 XTI Unfilter	ed Data (e	vent_uf)	DIRECTOR	Y 73031	93 kB up	dated: 2018-	05-01	08:47:36					

TAR selected products Create Download Script Reset

Save to Hera What is Hera?

Browse Feedback

NICER Observational Data

- Data downloadable from NASA's HEASARC archive
 - Searchable using <u>Browse</u> or <u>Xamin</u> interfaces

- Guest observers receive notification when data are ready
- 1200120110
- A scientific observation is identified by its observational identifier (10-digit number) PPPTTVVss
 - PPPP Proposal number
 - TT Proposed target number (e.g., proposer asked for two neutron star targets)
 - VV Proposed visit number (e.g., proposer asked for five visits of 10 ks each)
 - SS Segment number (observations crossing calendar day boundaries are split into multiple segments)
 - A day-long segment may have multiple "snapshots" or Good Time Intervals, since ISS is in a low-earth orbit, typically about 1000 seconds each

- 1. <u>nicercal</u> apply standard NICER calibration
- 2. <u>niprefilter2</u> derive calibrated filter (MKF) file
- 3. <u>nimaketime</u> create standard screening good time intervals
- 4. nicermergeclean combine per-MPU data and filter/screen
- 5. <u>niautoscreen</u> automatically screen for problematic per-FPM and per-MPU conditions

NICER High Level Recommendations

- Use the 'nicerl2' processing tool for all data
 - Applies calibration and standard processing
- Consult <u>on-line NICER documentation</u> for analysis issues
 - Software guide overview
 - Analysis "threads:" procedures for common issues
 - Analysis tips for specific known problems or issues you may encounter
 - Keep your CALDB <u>up to date</u>, and understand calibration limitations by reading <u>calibration documents</u>
 - Systematic errors: Relative systematic errors can be expected to be less than 1.5% in the 0.4 10 keV range.

Analysis Threads

NICER Data Analysis Threads

Introduction

This page gives links to short, step-by-step recipes which NICER called "threads." They are meant to be self-contained analysis tasks, with links to other threads where appropriate. The modification date of each thread listed in parentheses.

Additional analysis resources, such as software guides and caveats, can be found on our NICER Data Analysis page.

Setup and Data Preparation

- <u>Setting Up a NICER Analysis Environment</u> (2023-01-09) ★
- Using the nicerl2 high-level processing script with NICER data (2022-10-20) *
- How to report NICER software and calibration versions (2022-04-25)
- <u>Release Notes for HEASoft 6.31 / 6.31.1</u> (2022-12-20) ★

Analysis: Spectra

- <u>Complete Spectral Product Pipeline (nicerl3-spect)</u> (2022-12-20)
- · Step-by-step manual spectral analysis tasks
 - Manually Extracting NICER Spectra (2022-10-26)
 - Manually Applying QUALITY Flags (2022-10-26)
 - Manually Applying Spectral Systematic Errors (2022-12-08)
 - Manually applying optimal Binning (ftgrouppha) (2021-10-13)
 - NICER Responses (ARFs and RMFs) (2022-04-28)
 - <u>Manually Estimating Backgrounds</u> for your NICER spectrum (2022-11-30)
- NICER Response Common Issues (2022-04-28) *
- What Residuals Plot Should I Use? (plot ratio) (2021-07-23)
- <u>Simulating</u> a NICER spectrum (2021-04-16)
- Please also see our <u>Analysis Tips & Caveats</u> for more information on analysis issues

Analysis: Light Curves

- Complete Light Curve Product Pipeline (nicerl3-lc) (2022-12-20) *
- <u>Creating NICER Light Curves</u> (2022-06-08)

Background Estimation

- Overview of the SCORPEON Background Model (2022-12-14)
- Using SCORPEON Models in XSPEC (2023-01-04)
- Manually Estimating NICER Backgrounds for your NICER spectrum (2022-11-30)

https://heasarc.gsfc.nasa.gov/docs/nicer/analysis_threads/

Data Processing Recommendations

- Use the 'nicerl2' processing task to process all NICER observations (part of standard HEASoft)
 - nicerl2 applies standard calibrations and screenings
 - Calibration: energy scale, timing offsets
 - Screenings: pointing, optical light, high background, noisy detectors
 - Use nicerl2 even if you freshly download data from the archive
 - When new calibration becomes available, the NICER pipeline does not always reprocess old data or apply to immediately to new data, so you need to
 - How to run nicerl2:

nicerl2 indir=./1234567890 clobber=YES

NICER + SEXTANT

Common Issues: Disabled Detectors

- While NICER has 52 operational detectors not all detectors are enabled for every observation. This is occurring more often now compared to post-launch
 - Occasionally, a detector auto-disables itself
 - NICER ops may disable detectors for high rate targets
 - Detectors may be disabled for maintenance activities ("annealing")
- How to check using your filter file (.mkf file)
 - Number of detectors:

ftstat niNNNNNNN.mkf
(and check median of NUM_FPM_ON column)

Which detectors disabled:

fsumrows infile=niNNNNNNNN.mkf'[1][col F=(FPM_ON?1:0)]' \
 outfile=fpm_on.fits cols=F rows=- operation=sum
(and use 'fv' to view resulting fpm_on.fits table image)
DET_ID = (MPU x 10) + FPM

- DET_ID's 11, 20, 22 and 60 are always disabled, as shown in figure
- When making ARFs and RMFs for spectra, be sure to follow instructions on NICER Response thread to include only enabled detectors

Undershoots and Overshoots

NICER + SEXTANT

STELLARUM, SCIENTIA

ANSA · GSFC

Where's My Data? Undershoots

- NICER's detectors are negatively impacted by optical light
 - Optical light measured by "undershoots" (FPM_UNDERONLY_COUNT in filter file)
- Standard screening requires undershoot rate < 200 ct/s
- If your observation is near the sun or has persistently high undershoots, most or all data may be excluded
 - Filter file SUN_ANGLE < 60 or FPM_UNDERONLY_COUNT > 200 would indicate this
- Relax this screening criteria with nicerl2 parameter

underonly_range=0-600

• However, beware that high optical light is not accounted for in calibration and may also caused enhanced low energy noise

Undershoots and Overshoots

Also causes reset events

NICER + SEXTANT

LLARUM, SCIE

SA+GS

• Partial clipping CR events contribute to background!

Where's My Data? Overshoots

- Particle background likely correlated with "overshoots"
 - FPM_OVERONLY_COUNT in filter file
- The standard screening excludes data with "high" overshoots, in an orbit dependent way (see orange line in figure)
- This can exclude too much data, especially near "polar horn" regions of high geomagnetic activity
 - Shows up as data drop-outs at certain parts of orbit
- Some evidence that solar modulation of cosmic rays has changed since we designed this screening criterium

Loosen this criterium with nicerl2 parameters:

overonly_range=*-2
Can also adjust norm of
overonly_expr

Producing Spectra and Backgrounds

- Now two options to produce background spectra/model
- All automated by nicerl3
- Also produces script to load in spectrum and appropriate background
- Automatically bins spectrum "optimally" (see Kaastra & Bleeker 2016)

nicerl3-spect

As output, nicerl3-spect makes the following products:

- extracted spectrum from cleaned event file (phafile)
- Background spectrum file (bkgfile) or script (bkgscript) depending on the background model setting
- ARF response file (arffile) effective area for target
- Sky ARF response file (skyarffile) effective area for diffuse sky
- RMF response file (rmffile) redistribution matrix for target
- Background response file (bkgrmffile) redistribution matrix for particle background
- XSPEC "load" file (loadfile) example script to load files into XSPEC

NICER Example Faint Source

- Flux 1-sigma range is 0.87 1.15 x 10⁻¹³ erg/s/cm² (~4 μCrab; compare to ~300 μCrab RXTE PCA sensitivity)
- New SCORPEON model is adjustable to get ultimate fit to your data

Cosmic X-ray Background (CXB). The cosmic X-ray background is the well-known flux of X-rays from cosmic distances, primarily from distant active galaxies. The normalization (cxb_norm) and spectral shape are taken from Cappelluti et al. (2017; ApJ 837 19). Although the CXB is constant in time, it does vary from point to point on the sky (i.e. cosmic variance), and for NICER's aperture size the variation can be 20% (1 sigma; see Moretti et al. 2009, A&A 493 501). The norm is in units of photons s⁻¹ cm⁻² sr⁻¹.

Galactic X-ray Halo. The galactic X-ray halo has been proposed for some time to explain a portion of the diffuse X-ray background. HaloSat recently completed a survey of the halo (see figure above). We use the halo model of Kaaret et al. (2019; Nature Astronomy 4 1072), with a fixed temperature of 0.225 keV and normalization taken from their density model. However, the true distribution is clumpier than described by the model, so the NICER halo emission measure parameter (halo_em) is allowed to vary up to 50% around the a priori estimate.

(Attribution: Slavin 2017 CC BY 3.0)

Local Hot Bubble (LHB). The local hot bubble is cavity of hot plasma in which the solar system is located. The SCORPEON model of the LHB is informed by Liu et al. (2017; ApJ 814 33), which in turn measured using the ROSAT All-Sky Survey (see above). The temperature of the thermal plasma is taken from that work. Unfortunately we were not given permission by the authors to distribute the LHB emission measure sky maps, so we provide an a priori emission measure estimate from crude contours estimated by hand from the published on-line paper. This emission measure norm (lhb_em) is allowed by vary by 50% during fitting.

Solar Wind Charge Exchange (SWCX) and Neutral Oxygen (OK). Solar wind charge exchange (SWCX) is a charge exchange interaction between the solar wind ions and atmospheric atoms within the geomagnetosphere. High speed ions can capture an electron from neutral atoms near the earth, and the resulting cascade to the ion's ground state results in X-ray emission. NICER has seen significant K α emission from O VII (574 eV), O VIII (654 eV), and Ne IX (898 eV). This emission can vary on timescales of minutes and varies with look direction as well. The intensity is not predictable in a straightforward operational way. Oxygen K emission from neutral atoms has also been seen in NICER observations (K α emission line at 533 eV). This phenomenon is an area of research, but the proposed mechanism is that solar X-rays ionize neutral oxygen that upwells into the polar cusp regions. In practice, while there is a rough correlation with the cusp regions, we have often seen emission from a much broader region, and sometimes not at all. Again, the intensity is not predictable in a straightforward way. Because of the behavior of both SWCX and neutral oxygen, these lines are included in the model but the norms default to zero. It is up to the user to recognized these lines and allow the norms to vary. The norms (ok_norm, ovii_norm, ovii_norm, neix_norm) are in units of photons s⁻¹ cm⁻² sr⁻¹.

Background

ASA · GSFC

Geographic Overview of Dominant NICER Background Contributors

Library Models vs Template Models

NICER + SEXTANT

STELLARUM, SCIENTIA

JASA · GSFC

- Break parameter space into cells, measure background in each shell (library of spectra)
- Application: calculate exposure in each shell, make weighted sum of library spectra

Template Model: SCORPEON

- Measure "basis vector" of each unique component
 - Make smoothed version of template as XSPEC model
- Normalized based on known telemetry (overshoots, etc)
- Application: predict norms from telemetry & load into XSPEC

Background: SCORPEON

- SCORPEON Model
- Major goals
 - Break down background into physicallymotivated components
 - Separate "data modes" (slow-only, slow+fast event types), and both
 - Assume that these components can be modeled with simple spectral models so they are easy to implement

Thorne et al 1980 Tyssoy presentation

SCORPEON Name

- S COR PE O N
 - S = **SAA**
 - COR = COsmic-Ray (COR_SAX)
 - PE = Precipitating & trapped Electrons
 - Precipitating electron population (PREL)
 - Trapped electron population (TREL)
 - Low energy electrons (LEEL) solar storms
 - O = cOnstant
 - Astrophysical: CXB + Halo + LHB + SWCX
 - Non-varying Non-X-ray background
 - N = Noise peak (not dealt with here)

SCORPEON Background Components

Electron-Dominated

NICER + SEXTANT

ASA · GSFC.

Background: SCORPEON

ni5030170101mpu7_loadsco.xcm

- Script will load the background model and source spectra
- Frozen and free components set by observing conditions
- nxb is the non-X-ray background
- Sky is anticipated X-ray background

NICER + SEXTANO

ELLARUM SCIENTIA E

NSA+ GSF

 Better capture of covariance between background uncertainty and science model parameter uncertainty

IMPORTANT: Scorpeon should be fit in the 0.22-15.0 keV energy range. Use "pgstat" or "cstat" when fitting.

Model Model Component Parameter Unit Value COMD par 1 niscorpv22_nxbbatch1_frac 0.903904 frozen 1 niscorpv22_nxbcon_norm 51.9686 2 frozen niscorpv22_nxbcor_norm 15.4170 +/- 1.58904 3 1 niscorpv22_nxbtrel_norm 1 5.45548E-04 +/- 2.90710 niscorpv22_nxbleel_norm 5 1 0.0 +/- 30.9903 6 1 niscorpv22_nxbprel_norm 3.76703E-02 +/- 0.106915 niscorpv22_nxbsaa_norm 7 1 0.0 frozen 8 1 niscorpv22_nxbnorm 1.00000 frozen 9 2 niscorpv22_noisenoise_ecent 0.109723 frozen 10 2 niscorpv22_noisenoise_sigma 2.73464E-02 frozen 11 niscorpv22_noisenorm 1.00000E+05 ______ Model sky:niscorpv22_sky<1> + niscorpv22_swcx<2> Source No.: 98 Active/On Model Model Component Parameter Unit Value COMD par niscorpv22_skygal_nh 1.69820E-02 frozen niscorpv22_skycxb_ind 1.45000 2 1 frozen 1 niscorpv22_skycxb_norm 10.9100 3 frozen niscorpv22_skyhalo_kT 0.225000 frozen niscorpv22_skyhalo_abund 5 0.300000 frozen 6 niscorpv22_skyhalo_em 1 1.26630E-02 +/- 2.30023E-02 niscorpv22_skylhb_kT 7 1 frozen 9.90000E-02 niscorpv22_skylhb_em 8 1 3.52000E-03 +/- 2.02168E-02 niscorpv22_skynorm 9 1 1.00000 frozen niscorpv22_swcxswcx_sigma 10 2 0.0 frozen niscorpv22_swcxok_norm 11 2 0.0 frozen niscorpv22_swcxovii_norm 12 2 0.0 frozen 13 niscorpv22_swcxoviii_norm 2 0.0 frozen 14 2 niscorpv22_swcxneix_norm 0.0 frozen 15 niscorpv22_swcxnorm 1.00000 frozen

Model nxb:niscorpv22_nxb<1> + niscorpv22_noise<2> Source No.: 99

Active/On

Background contains in-focus & spatially extended components that can vary independently ; Left: *hrej* > *ibg*; Right: *ibg* >> *hrej*

red curve: pipeline selection line (to left) for in-focus events

ibg: events "in focus", but at 15-18 keV, which is beyond the eff. area of the optics

hrej: rejected events from particles near detector edge

ibg and *hrej* represent different types of particle events

PI_RATIO = keV (slow chain) / keV (fast chain)

Remillard (2021)

Background: 3C50

- Template library created from blank sky observations under different observing conditions
- Nicerl3 takes observing conditions from target observation, pulls appropriate 3C50 library model, rescales normalization (for e.g., for number of detectors, exposure time, etc).
- Background is then simply subtracted from source spectrum (should use standard energy cuts)

Background Summary

Characteristic	SCORPEON	3C50	Space Weather		
Model Type	Parameterized	Library	Library		
Training Variables	COR_SAX Overshoots	HBG (15-18 keV) HREJ	COR_SAX KP		
Background File	Optional	YES	YES		
XSPEC Model	YES	NO	NO		
Always Produces Estimate?	YES	NO	YES		
X-ray Sky Backgrounds?	YES	Average	Average		
Noise Peak	YES	YES	Average		
Light Curves?	NO	NO	YES		

Producing Light Curves

- Light curves are produced by the nicerl3lc pipeline
- PI range sets energy range, PI = 10 eV (ex. Below shows 3-15 keV)
- Default is to run with no background
- Space-weather is only background option currently available in nicerl3-lc

nicerl3-lc 1234567890 pirange=300-1500 timebin=60.0 clobber=YES

nicerl3-lc 1234567890 300-1500 60.0 bkgmodeltype=sw clobber=YES

Space weather background model:

uses blank sky observations under comparable observing conditions to estimate the typical background count rate

NICER Calibration Status

- NICER energy scale
 - After calibrations, all event files have "PI" column with common energy scale ("Pulse Invariant")
 - **1** PI = 10 eV (e.g. PI = 150 means E = 1.50 keV)
 - Estimated error ~5 eV (0-10 keV)
- NICER on-axis response
 - NICER calibrated against Crab nebula as a "smooth" continuum
 - Systematic errors ~1-2% (0.4-10 keV)
 - Total effective area and slope comparable to Madsen et al. 2017 NuSTAR (within ~5%)
 - Often, residuals are due to difficiencies in model, not response

- ~2.2 keV Gold M edge from XRC gold coating (actually a complex from 2.1 4.5 keV)
- 1.840 keV Silicon K edge (window & bulk detector)
- 1.56 Aluminum K edge/fluorescence (window)
- ~0.3 keV Trigger efficiency cut-off (varies by det)
- ~0.2 keV Noise peak (varies by det & lighting)
- At high optical light levels response is broadened but this is not yet modeled (will be in RMF calculator in work)
 - Noise peak may intrude into spectrum
 - Sharp lines may be degraded

NICER + SEXTANT

STELLARUM, SCIEN

ASA+ GSFC

Astrophysical Features to Watch Out For

- The interstellar medium is often modeled with neutral N_H models such as wabs, tbabs (Wilms et al), etc.
- These models are general approximations to reality, especially with all parameters left at solar abundance
- Most common features:

NICER + SEXTANT

STELLARUM, SCIENTIA

JASA + GSFC

- Oxygen K edge (0.56 keV)
- Iron K edge (0.71 keV)
- Neon K edge (0.87 keV)
- If you see residuals in this consider using "tbfeo" or "tbvarabs" to allow abundances to vary; check literature for reported abundances
- Even so, actual line profiles may not match "perfect" profiles tabulated in tbabs model (due to ionization, molecular compound, or dust composition of ISM); See Crab to right
- Dust scattering halos see bright target slide

- **Deadtime correction** affects all observations
 - Team is working on documentation and tools for deadtime corrections
- **Pile-up** is a concern only for the brightest targets (>2 Crab); this is a difficult issue to model
- **Dust scattering halos** have significant effects
 - Energy dependent
 - Aperture size dependent
 - interferes with comparing observatories with different apertures (NICER 360", RXTE 1°, Imagers ~few ")
 - Halo is time dependent if source varies
 - 'xscat' model in XSPEC recently updated by Randall Smith for larger radius apertures such as NICER. Use radius=180"

V404 Cyg (Chandra ACIS)

Heinz & Corrales et al. 2016

Ways to Get Help

- Consult <u>on-line NICER documentation</u> for analysis issues
 - Software guide overview
 - Analysis "Threads" procedures for common tasks
 - Analysis tips for specific known problems or issues you may encounter

• Send questions to the NICER helpdesk: https://heasarc.gsfc.nasa.gov/cgi-bin/Feedback

Thanks! Questions?

NICER PSR J0030+0451

