

OM Status

Simon Rosen ESAC

XMM User Group meeting 2023 May 10-11

European Space Agency

OM Status

- OM continues to operate as `normal'.
 - Spacons covering 3 missions so continuing to improve automated recovery procedures to
 - reduce manual interventions and human errors
 - speed up recovery \rightarrow fewer lost exposures

R. Perez Martinez

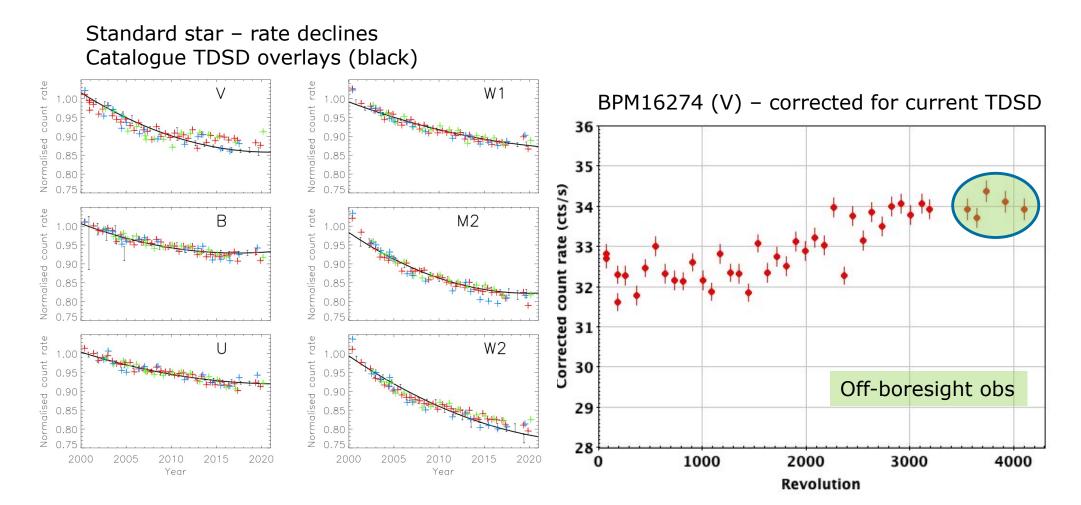
Time-dependent sensitivity degradation

Simulaneous exponential fit to suitable data from all 3 standards up to rev 4250

OM throughput at 2030

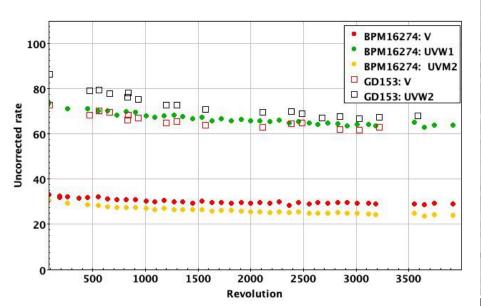
() 1.05 1.05 1.05 1.00 0.95 Exponential fit BPM16274 HZ2 GD153	Image: Note of the second s	Filter	Throughput (2030)
et 0.90 0.85 0.80	€ 0.95 € 0.95	V	0.86
	0.85	В	0.90
		U	0.89
1.05 E Exponential fit BPM16274 Band U Hz2	Exponential fit BPM16274 1.05 Band UVW1 Hz2 E 1.00 0.95	UVW1	0.86
1.00 0.95 0.95 0.85 0.80 0.75	€ 0.95 ¥ 0.90 0.85 0.80 0.75	UVM2	0.76
		UVW2	0.78
0.75 1.10 1.05 1.00 0.95 0.90 0.95 0.90 0.95 0.80 0.75 5.2×10 ⁴ 5.4×10 ⁴ 5.6×10 ⁴ 5.8×10 ⁴ 6.0×10 ⁴	D.13 1.10 Exponential fit BPM16274 Band UVW2 GD153 0.90 0.95 0.80 0.75 5.2×10 ⁴ 5.4×10 ⁴ 5.6×10 ⁴ 5.8×10 ⁴ 6.0×10 ⁴		

Minor modifications to SAS CAL tasks to apply corrections.

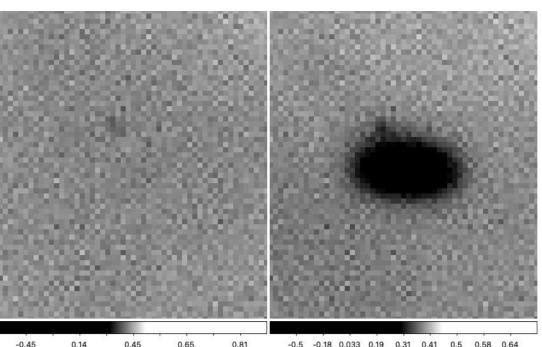

ESA UNCLASSIFIED - For Official Use

= II 🛌 == ++ II == 🔚 == II II = = == 🔚 🛶 🔯 II == == H 💥 🖕 🖮 IV

Time-dependent sensitivity degradation – standards v catalogue sources



 Known difference of up to ~4% in degradation determined from standard stars and from 'constant' catalogue sources, mainly in V and W2?

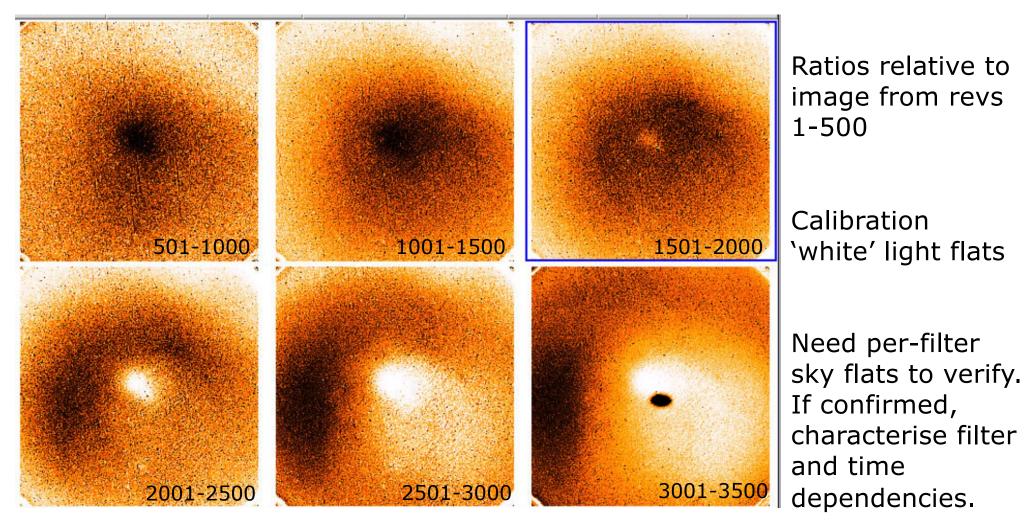


Time-dependent sensitivity degradation – standards v catalogue sources

Rate effect? – similar rates in filters with/without deviations. Not rate effect

Localised boresight degradation – goes the wrong way at later epochs. Also, observations of standards offboresight show similar behaviour.

Biases from the methodology? Possibly.

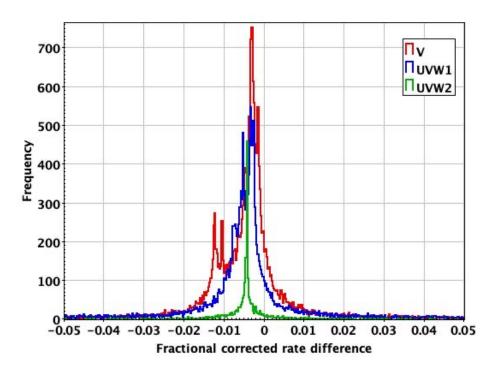

ESA UNCLASSIFIED - For Official Use

= FI 🛌 == + FI 💻 🚝 🚍 FI FI == 💷 == 🕼 FI == 🖬 🖽 💥 🔚 🕨

But.....

 Spatial time-dependent degradation of the detector pulling some of the field star rates down?

SUSS6 catalogue


- Endorsement 2022-05-17/09: The UG strongly appreciate the efforts of the SOC OM calibration and MSSL teams to prepare the XMM-OM SUSS6 catalogue and is looking forward to its release in late 2022 or early 2023.
- Recommendation 2022-05-17/10: The UG recommends that the determined update for the OM time- dependent sensitivity degradation (for the filters) is applied prior to the SUSS6 catalogue generation and release.
- Next version, SUSS6, previously aiming for Dec 2022.
- Now aiming for Autumn 2023
 - Following UG recommendation, and comparative analysis of XMM production pipeline and bespoke pipeline products, process is making use of production pipeline products

SUSS6 catalogue

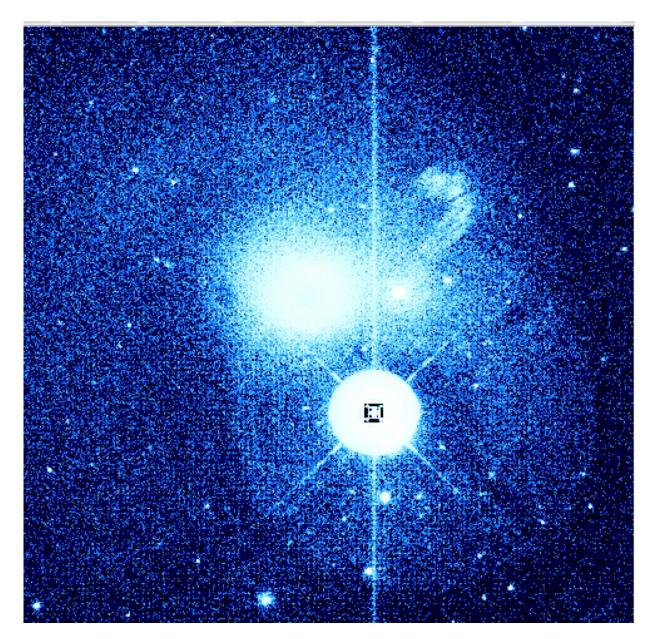
Comparisons of subsets of same observations in SUSS5 and from standard pipeline

- On average, SUSS5 contains 94% of pipeline detections
- SUSS5 contains, 1-15% more for cases where pipeline does not mosaic certain modes
- Matching rates (1") average 88%
- Matched sources generally show good astrometric (< 0.2") and photometric (< 1%) agreement.

ESA UNCLASSIFIED - For Official Use

SUSS6 catalogue

- Catalogue will comprise ~12050 observations (likely ~ 10 million detections).
- Main loss is a number of detections from mosaic (stacked) images of a few hundred fields where modes are combined by the bespoke pipeline but not by the production pipeline (total numbers are small)
- Implementation of an updated time-dependent degradation correction would require a Bulk Reprocessing - envisaged for 2024, i.e beyond timeframe of OM catalogue production
 - Flat-field analyses indicates need to understand/clarify validity/application of TDS based on standards
 - Catalogue photometry could be corrected post-production, in principle but then not consistent with archive
- Better to postpone application of new TDS approach
- Catalogue generation is underway


Forward look and other issues

- Production of SUSS6 with current calibration
- Update TDS characterization based on standard stars
- Complete evaluation of spatial sensitivity variations and, if appropriate, generate time-resolved flat-field maps per filter
- Update of the OM Calibration Status document

ESA UNCLASSIFIED - For Official Use

 XMM-OM Calibration |

 S. Rosenplisher

ESA UNCLASSIFIED - For Official Use XMM-OM Calibration | S. Rosenpla2space Agency