Instrument Health

MOS:

• Anomalous States:
 • No significant new anomalous chip states
 • 1-4, 1-5, 2-5 still the most problematic
 • A very few spectra from 1-3, 1-6, 2-3, 2-6 bad
Instrument Health

MOS:

• Anomalous States:
 • No significant new anomalous chip states
 • 1-4, 1-5, 2-5 still the most problematic
 • A very few spectra from 1-3, 1-6, 2-3, 2-6 bad
 • Anom. states not so well separated in R-HR
Instrument Health

MOS:

• Anomalous States:
 • No significant new anomalous chip states
 • 1-4, 1-5, 2-5 still the most problematic
 • A very few spectra from 1-3, 1-6, 2-3, 2-6 bad
 • Anom. states not so well separated in R-HR
 • New anom. state defs. implemented in ESAS
 ▶ HR<1.5 bad for all chips
 ▶ 1-4, 2<HR<2.5 questionable, HR<2 bad
 ▶ 1-5, HR<2 is bad
 ▶ 2-5, 2.5<HR<3 questionable, HR<2.5 bad
Instrument Health

PN:
• General increase of QPB rate
• No general trend in hardness ratio

BGWG 2011
Instrument Health

PN:

• No general trend in hardness ratio
Summary

- Automated production of QPB files for MOS & PN
- Single QPB .fits file for each instrument
 - one chip per extension for MOS
 - one quadrant per extension for PN
- MOS QPB files include anomalous state data
 - new ESAS smart enough to exclude normally
 - may define/characterize “quasi-anomalous states”
Work Plan

Now (?) in maintenance mode
• Update MOS & PN QPB files ~ every six months
• Update FWC files (Snowden)
 • If the usable files forthcoming from SOC
• Construct new SP vignetting maps and spectra

SWCX - Part of continuing STORM proposal
• Building new magnetosheathic model
 • BATSRUS-like hydro model for unique events
 • Similar model cubes for quiescent periods