

XMM-Newton Calibration

Michael Smith, on behalf of XMM-SOC and Instrument Teams

18th XMM-Newton Users' Group Meeting, ESAC, 11 May 2017

ESA UNCLASSIFIED - For Official Use

- 1. Status of calibration related to the Users' Group resolutions and recommendations
- 2. Calibration monitoring and improvements over the last 12 months
- 3. Additional future calibration activities

ESA UNCLASSIFIED - For Official Use

XMM-Newton Calibration | M. Smith | 18th XMM-Newton Users' Group Meeting | 11/05/2017 | Slide 2

4

· = ■ ▶ = = + ■ + ■ ≡ = = ■ ■ ■ = = = ■ ■ ■ ■ = = = ₩ =

2016 UG Recommendations

Recommendation 2016-06-08/01:

• As result of some recent investigations, there is now a requirement to implement an iterative adjustment to the parameters for the 2-D PSF. [...] This activity needs to be considered as of the highest priority because of its impact on many other aspects of the calibration.

Recommendation 2015-05-22/02: The UG identifies the following tasks in order of priority;

- 1. Cross-calibration of the responses of the XMM-Newton X-ray cameras and spectrometers. This is a longstanding issue, and it should be resolved as far as is possible in the near future.
- 2. Evidence for a shift in gain of the PN detectors, which is dependent on the quiescent background. This should be investigated and quantified, and a correction implemented.
- 3. Calibrated spectra from NuSTAR and XMM-Newton sometimes show a significant mis-match in spectral slope and offset above 3keV. This is a matter which the IACHEC should be encouraged to investigate.
- 4. Complete the calibration of the PN Burst Mode, RDPHA correction.

Recommendation 2016-06-08/02:

• The time and energy reconstruction of the pn Timing mode should be studied with respect to recently observed discrepancies.

ESA UNCLASSIFIED - For Official Use

XMM-Newton Calibration | M. Smith | 18th XMM-Newton Users' Group Meeting | 11/05/2017 | Slide 3

· = ■ ▶ = = + ■ + ■ ≡ = ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■

NGC 5506 (Seyfert 2)

Dominated (>90%) by point source emission.

PN spectral comparison:

- annuli from 20"-25" to 40"-45"
- compared with 20" circle

Other sources show similar results

ESA UNCLASSIFIED - For Official Use

XMM-Newton Calibration | M. Smith | 18th XMM-Newton Users' Group Meeting | 11/05/2017 | Slide 5

- Systematics in the current PSF modelling for all 3 XRTs
- Hopefully can be improved by tuning the PSF model parameters
- Source sample consists of 11 observations of bright non-piled-up point sources located at the nominal aim point
- 5-6 nested annuli being compared (up to 60" outer radius)
- 2 PSF model parameters (r0 and a) being varied changes affect off-axis angles < 3'

ESA UNCLASSIFIED - For Official Use

XMM-Newton Calibration | M. Smith | 18th XMM-Newton Users' Group Meeting | 11/05/2017 | Slide 6

· = ■ ▶ = = + ■ + ■ = ≔ = 1 ■ ■ = = = = ₩ → ■ ■ ■ = = ₩

Iterative scheme for the empirical correction of XRT XPSF parameters:

- Per source:
 - Extract spectrum from circular region
 - Extract spectra from several nested annular regions
 - Create respective RMFs
 - • Create respective ARFs
 - Fit model to circular region spectrum
 - Apply this as reference model to annular spectra, derive residuals
- For all annular spectra, and all sources, determine a suitable statistic:

$$\sum_{i} \frac{(di-mi)^2}{e_i^2}$$

Modify ELLBETA parameters in order to minimise the statistic

ESA UNCLASSIFIED - For Official Use

XMM-Newton Calibration | M. Smith | 18th XMM-Newton Users' Group Meeting | 11/05/2017 | Slide 7

= 88 🛌 == + 88 == 🔚 == 81 88 == 18

XRT2

+

ES

PN: MCG-5-23-16

XMM-Newton Calibration | M. Smith | 18th XMM-Newton Users' Group Meeting | 11/05/2017 | Slide 9

*

| 🛌 👬 🖛 🕂 11 💻 🖄 🚍 11 11 🚍 🚍 3

PN: Mkn 6

XMM-Newton Calibration | M. Smith | 18th XMM-Newton Users' Group Meeting | 11/05/2017 | Slide 10

+

E٤

ES

MOS2: PKS B1334-127

XMM-Newton Calibration | M. Smith | 18th XMM-Newton Users' Group Meeting | 11/05/2017 | Slide 11

+

2016 UG Recommendations

Recommendation 2016-06-08/01:

• As result of some recent investigations, there is now a requirement to implement an iterative adjustment to the parameters for the 2-D PSF. [...] This activity needs to be considered as of the highest priority because of its impact on many other aspects of the calibration.

Recommendation 2015-05-22/02: The UG identifies the following tasks in order of priority;

- 1. Cross-calibration of the responses of the XMM-Newton X-ray cameras and spectrometers. This is a longstanding issue, and it should be resolved as far as is possible in the near future.
- 2. Evidence for a shift in gain of the PN detectors, which is dependent on the quiescent background. This should be investigated and quantified, and a correction implemented.
- 3. Calibrated spectra from NuSTAR and XMM-Newton sometimes show a significant mis-match in spectral slope and offset above 3keV. This is a matter which the IACHEC should be encouraged to investigate.
- 4. Complete the calibration of the PN Burst Mode, RDPHA correction.

Recommendation 2016-06-08/02:

• The time and energy reconstruction of the pn Timing mode should be studied with respect to recently observed discrepancies.

ESA UNCLASSIFIED - For Official Use

XMM-Newton Calibration | M. Smith | 18th XMM-Newton Users' Group Meeting | 11/05/2017 | Slide 13

Algorithm and Implementation:

Testing: RGS1 v. RGS2

3C 273 @ rev 1465

i S

Testing: RGS1 v. RGS2

25

30

35

-		30	C 273 @ rev 1465	Model: two absorbed power-laws		
		independ	ent RGS1 and RGS2 fits	without correction		
	RGS1	RGS2				
N (1020)	$2.28^{+0.55}_{-0.56}$	$1.89^{+0.95}_{-0.79}$	om² s-1 Å-1	and and an and a state of the s		
N _H (10-3)	$1.85^{+0.53}_{-0.52}$	$2.19^{+0.77}_{-0.69}$	Photons			
Slope	$1.68^{+0.15}_{-0.33}$	$1.68^{+0.17}_{-0.41}$				
power-law #1	$1.51^{+0.22}_{-0.43}$	$1.52^{+0.26}_{-0.56}$		RGS1 RGS2		
Norm (10 ⁻²)	$3.61^{+0.41}_{-1.02}$	$3.52^{+0.42}_{-1.28}$		10 15 20 25 30 Wavelennth (Å)		
power-law #1	$3.13^{+0.67}_{-1.20}$	$3.20^{+0.78}_{-1.52}$		with correction		
Slope	$3.61^{+0.76}_{-0.70}$	$3.69^{+1.18}_{-0.97}$	²			
power-law #2	$3.16^{+0.70}_{-0.52}$	$3.20^{+0.93}_{-0.65}$	s cm² s ⁻¹ k	6 Charles and the state of the		
Norm (10 ⁻²)	$0.56^{+0.94}_{-0.34}$	$0.43^{+1.19}_{-0.31}$	Photon			
power-law #2	$0.97^{+1.14}_{-0.61}$	$1.01^{+1.45}_{-0.69}$	3			
				RGS1 RGS2		

without correction with correction

> + +

15

10

20

Wavelength (Å)

35

Testing: RGS2 / RGS1 Flux Ratio

· = ▶ ▶ \$\$ = + \$\$ = '= := 1\$ \$\$ \$\$ = := := ₩ = **™ \$ \$ \$ \$ \$ \$ \$ \$ \$**

4

Testing: RGS to EPIC-pn Rectification Factors

Based on 42 observations of bright BL Lac

EPIC-pn in Small Window mode

.

EPIC: Update of the CORRAREA Correction

The **CORRAREA** tool was implemented in SAS 14 (autumn 2014):

- Applies an empirical correction to the EPIC effective areas.
- Can be used to evaluate the impact that the current relative EPIC A_{eff} uncertainties have on astrophysical parameters derived from spectral fitting.
- Currently, a non-default SAS option.

A recalibration and full validation of the **CORRAREA** correction is currently being undertaken:

- Based on SAS 15.1, and latest calibration (as of Oct 2016).
- Revised screening: common GTIs, background selections, pile-up evaluation.
- Largely automated pipeline from data reduction to spectral and residual fitting.
- A new **CORRAREA** correction is close to release (⇔ summer 2017).

Outlook:

- Include a wider sample of sources, observing modes (LW, SW) and filters (Thick) (⇒ autumn 2017).
- Cross-mission comparison in order to justify absolute A_{eff} correction.

ESA UNCLASSIFIED - For Official Use

XMM-Newton Calibration | M. Smith | 18th XMM-Newton Users' Group Meeting | 11/05/2017 | Slide 19

Mirrors: Effective Area Simulations

- In mid 2016 an investigation (by D. Lumb) was started into possible unaccounted for mirror contamination present pre-launch.
- Using industry reports on expected contamination, SciSim was used to compare telescope effective areas. Results show the currently implemented values are inconsistent.
- The discrepancies are telescope-dependent, implying absolute and relative changes to the EPIC (and RGS) effective area calibration.
- Progress has been made, resulting in preliminary estimates based on the best knowledge of the telescope contamination. Assuming this contamination is present after launch this would mean:
 - \circ Absolute changes in telescope effective area: ~ 2 4%.
 - Relative changes between EPICs (esp. XRT3 and XRT1/2): $\sim 0 3\%$.

ESA UNCLASSIFIED - For Official Use

XMM-Newton Calibration | M. Smith | 18th XMM-Newton Users' Group Meeting | 11/05/2017 | Slide 20

· = ■ ▶ = = + ■ + ■ ≡ ≡ = ■ ■ ■ = = = ₩ ₩ .

2016 UG Recommendations

Recommendation 2016-06-08/01:

- As result of some recent investigations, there is now a requirement to implement an iterative adjustment to the parameters for the 2-D PSF. [...] This activity needs to be considered as of the highest priority because of its impact on many other aspects of the calibration.
- Recommendation 2015-05-22/02: The UG identifies the following tasks in order of priority;
- 1. Cross-calibration of the responses of the XMM-Newton X-ray cameras and spectrometers. This is a longstanding issue, and it should be resolved as far as is possible in the near future.
- 2. Evidence for a shift in gain of the PN detectors, which is dependent on the quiescent background. This should be investigated and quantified, and a correction implemented.
- 3. Calibrated spectra from NuSTAR and XMM-Newton sometimes show a significant mis-match in spectral slope and offset above 3keV. This is a matter which the IACHEC should be encouraged to investigate.
- 4. Complete the calibration of the PN Burst Mode, RDPHA correction.
- Recommendation 2016-06-08/02:
- The time and energy reconstruction of the pn Timing mode should be studied with respect to recently observed discrepancies.

ESA UNCLASSIFIED - For Official Use

XMM-Newton Calibration | M. Smith | 18th XMM-Newton Users' Group Meeting | 11/05/2017 | Slide 21

_ = 11 |= 12 = + 11 = 12 = 11 |11 = = 12 |2 = 10 |11 = 12 |2

PN: Quiescent Background Gain Correction

- Details of the quiescent background gain correction (QBGC) were presented at the 2016 Users' Group meeting.
- In order to correct the PN gain, the discarded line rate is used as proxy for the quiescent background.
- Original implementation envisaged the use of an *observation averaged rate*, already stored in the events file (**NDISCLIN** keyword).
- However, the QB may vary significantly within an observation, necessitating the use of the instantaneous discarded line rates, included in the housekeeping data stream.
- This requires a fundamentally different implementation at S/W level.
- Main issue is the robust handling of telemetry gaps, outlier values, intrinsic noise.
- \Rightarrow Aim is for SAS 17 implementation (end of 2017).

ESA UNCLASSIFIED - For Official Use

XMM-Newton Calibration | M. Smith | 18th XMM-Newton Users' Group Meeting | 11/05/2017 | Slide 22

2016 UG Recommendations

Recommendation 2016-06-08/01:

- As result of some recent investigations, there is now a requirement to implement an iterative adjustment to the parameters for the 2-D PSF. [...] This activity needs to be considered as of the highest priority because of its impact on many other aspects of the calibration.
- Recommendation 2015-05-22/02: The UG identifies the following tasks in order of priority;
- 1. Cross-calibration of the responses of the XMM-Newton X-ray cameras and spectrometers. This is a longstanding issue, and it should be resolved as far as is possible in the near future.
- 2. Evidence for a shift in gain of the PN detectors, which is dependent on the quiescent background. This should be investigated and quantified, and a correction implemented.
- 3. Calibrated spectra from NuSTAR and XMM-Newton sometimes show a significant mis-match in spectral slope and offset above 3keV. This is a matter which the IACHEC should be encouraged to investigate.
- 4. Complete the calibration of the PN Burst Mode, RDPHA correction.

Recommendation 2016-06-08/02:

• The time and energy reconstruction of the pn Timing mode should be studied with respect to recently observed discrepancies.

ESA UNCLASSIFIED - For Official Use

XMM-Newton Calibration | M. Smith | 18th XMM-Newton Users' Group Meeting | 11/05/2017 | Slide 23

EPIC-pn / NuSTAR Comparison

Comparison of 18 AGN spectra:

- PN imaging modes
- Strictly simultaneous PN-NuSTAR data
- Models fit to PN
- \Rightarrow Systematic NuSTAR residuals
- \Rightarrow Slope differences of ~0.15

However:

- Recent NuSTAR results (Madsen et al. 2017, comparing focused with non-focused measurements of the Crab) confirm NuSTAR normalisation underestimated by ~ 10%.
- Change in PSF parameters may affect EPIC spectral slope.

ESA UNCLASSIFIED - For Official Use

XMM-Newton Calibration | M. Smith | 18th XMM-Newton Users' Group Meeting | 11/05/2017 | Slide 24

· = ■ ▶ = = + ■ + ■ ≡ = 1 ■ ■ = = = = ■ ■ ■ ■ ■ = = = ₩ ₩ ₩

2016 UG Recommendations

Recommendation 2016-06-08/01:

• As result of some recent investigations, there is now a requirement to implement an iterative adjustment to the parameters for the 2-D PSF. [...] This activity needs to be considered as of the highest priority because of its impact on many other aspects of the calibration.

Recommendation 2015-05-22/02: The UG identifies the following tasks in order of priority;

- 1. Cross-calibration of the responses of the XMM-Newton X-ray cameras and spectrometers. This is a longstanding issue, and it should be resolved as far as is possible in the near future.
- 2. Evidence for a shift in gain of the PN detectors, which is dependent on the quiescent background. This should be investigated and quantified, and a correction implemented.
- 3. Calibrated spectra from NuSTAR and XMM-Newton sometimes show a significant mis-match in spectral slope and offset above 3keV. This is a matter which the IACHEC should be encouraged to investigate.
- 4. Complete the calibration of the PN Burst Mode, RDPHA correction.

Recommendation 2016-06-08/02:

• The time and energy reconstruction of the pn Timing mode should be studied with respect to recently observed discrepancies.

ESA UNCLASSIFIED - For Official Use

XMM-Newton Calibration | M. Smith | 18th XMM-Newton Users' Group Meeting | 11/05/2017 | Slide 25

PN: Timing & Burst Mode Issues

PN Timing Mode observations show several cases of sources with:

- larger than expected residuals at instrumental edges
- significant differences in line energies with respect to e.g. grating data (up to 70 eV at ~ 6 keV)

Sources are in the moderate count rate regime.

Possible issue with rate dependent correction in Timing Mode (and Burst Mode).

The chain of corrections affecting the TI & BU mode energy scale is being systematically evaluated.

Work in progress...

- Rate dependent correction (pattern recognition)
- Find event patterns
- Rate dependent correction (applied to charges)
- Gain correction
- Mode-specific gain correction
- CTI correction
- Long-term CTI correction
- CCD offset correction

ESA UNCLASSIFIED - For Official Use

XMM-Newton Calibration | M. Smith | 18th XMM-Newton Users' Group Meeting | 11/05/2017 | Slide 26

= II ▶ = = + II ■ ≝ = II II = = = H → II = = H *

- 1. Status of calibration related to the Users' Group resolutions and recommendations
- 2. Calibration monitoring and improvements over the last 12 months
- 3. Additional future calibration activities

ESA UNCLASSIFIED - For Official Use

XMM-Newton Calibration | M. Smith | 18th XMM-Newton Users' Group Meeting | 11/05/2017 | Slide 27

4

· = ■ ▶ = = + ■ + ■ = ≝ = ■ ■ ■ = = = ₩ → ■ ■ ■ = = ₩ ₩ ₩

Summary of Calibration Monitoring

- EPIC bad pixels (XMM-CCF-REL-338)
- EPIC background and offset maps (XMM-CCF-REL-339)
- EPIC energy scale (XMM-CCF-REL-336)
- EPIC variable boresight (XMM-CCF-REL-343)

- EPIC-MOS contamination
- EPIC-pn flux stability
- EPIC-pn timing

- OM sensitivity degradation (XMM-CCF-REL-346)
- OM photometric stability
- OM grism flux stability

- ✤ OM astrometry
- ♦ OM variable boresight (XMM-CCF-REL-343)

- ✤ RGS bad columns (XMM-CCF-REL-347)
- RGS wavelength scale
- RGS CTI & gain (XMM-CCF-REL-345)
- RGS background

- RGS contamination
- RGS flux stability
- ✤ RGS offsets (XMM-CCF-REL-342)

ESA UNCLASSIFIED - For Official Use

XMM-Newton Calibration | M. Smith | 18th XMM-Newton Users' Group Meeting | 11/05/2017 | Slide 28

RGS: Contamination Monitoring

building-up slowly

No changes in the trend

XMM-Newton Calibration | M. Smith | 18th XMM-Newton Users' Group Meeting | 11/05/2017 | Slide 29

•

RGS: Bad Surface Monitoring

ESA UNCLASSIFIED - For Official Use

XMM-Newton Calibration | M. Smith | 18th XMM-Newton Users' Group Meeting | 11/05/2017 | Slide 30

+

RGS: Wavelength Scale Monitoring

Bright sample

85 observations of AB Dor, Capella, HR 1099 and Procyon

Faint sample

70 observations of fainter emission line stars

Heliocentric and Sun angle corrections applied; most recent XMM variable boresight

•

ESA UNCLASSIFIED - For Official Use

XMM-Newton Calibration | M. Smith | 18th XMM-Newton Users' Group Meeting | 11/05/2017 | Slide 31

MOS: Contamination Monitoring

Primary monitoring source: SNR 1E0102

Contamination status shows no change in trend:

- MOS1 stable
- MOS2 steadily increasing

4

XMM-Newton Calibration | M. Smith | 18th XMM-Newton Users' Group Meeting | 11/05/2017 | Slide 32

OM: Time Sensitivity Degradation

Originally based on linear fit to standard stars: OM_PHOTTONAT_0005.CCF

+

Now based on a quadratic fit to selected catalogue sources: OM_PHOTTONAT_0006.CCF

_ ■ ■ ► = + ■ + ■ ≡ _ ■ ■ = = = = = ■ ■ ■ ■ ■ = = = ■

OM: Time Sensitivity Degradation

Testing of the new correction on standard stars:

+ old correction

Δ new correction

ESA UNCLASSIFIED - For Official Use

XMM-Newton Calibration | M. Smith | 18th XMM-Newton Users' Group Meeting | 11/05/2017 | Slide 34

4

I II ≥ II = + II = ⊆ II II = Ξ II = II = II = II × ≤

OM: Repeatability of Filter Photometry

SAS 16 data processing: Count rates (cts/s) of standard stars observed regularly since 2001:

Star	Nobs	UVW2	UVM2	UVW1	U	В	V
GD 153	14	83.1	161.8	329.5	420.5	283.5	71.4
error (%)		1.4	1.5	0.8	1.4	1.0	2.1
Hz 2	17	23.8	48.3	111.7	168.8	148.8	43.7
error (%)		2.0	1.3	1.3	0.9	0.8	2.9
BPM 16274	32	14.7	30.3	72.9	112.7	107.8	33.0
error (%)		1.7	1.2	1.0	0.8	0.8	2.2

ESA UNCLASSIFIED - For Official Use

XMM-Newton Calibration | M. Smith | 18th XMM-Newton Users' Group Meeting | 11/05/2017 | Slide 35

4

二 ⅠⅠ ▶ ः: ■ + ⅠⅠ ■ ≝ **二 ⅠⅠ ⅠⅠ 二 二 ∷ ∷ Ⅰ Ⅰ Ⅰ 二 ः: Ⅰ** ₩ ▲

OM: Serendipitous UV Source Survey

- New version 3 of the XMM-Newton Serendipitous Source Survey ("the OM Catalogue"): SUSS3
- Released in March 2017
- Observations till mid-2015:
 - 7866 XMM-Newton pointings
 - 6,9 million entries
 - 4,8 million sources
 - 0,9 million sources with multiple observations
- Full reprocessing with SAS 15 & new time-dependent sensitivity degradation correction (OM_PHOTONAT_0006.CCF)
- New flag: sky_Image to identify sources detected in mosaic / stacked images
- Available through the ESA XSA: query I/F or full catalogue download
- Catalogue sources can be overlaid in the ESA-Sky utility

ESA UNCLASSIFIED - For Official Use

XMM-Newton Calibration | M. Smith | 18th XMM-Newton Users' Group Meeting | 11/05/2017 | Slide 36

_ = ∎∎ ⊾ == + ∎ = ≡ ≡ = ∎ ∎ ∎ = ≡ = ₩ **=** ∅ ∎∎ = ≡ ∎ ₩

Multi-wavelength study of the Crab (Dubner et al., ApJ, 2017)

UV data from the XMM-Newton Optical Monitor

UVW1 filter (291 nm):

- 75 exposures (2001 2015)
- 221 ks exposure time

- 1. Status of calibration related to the Users' Group resolutions and recommendations
- 2. Calibration monitoring and improvements over the last 12 months
- 3. Additional future calibration activities

ESA UNCLASSIFIED - For Official Use

XMM-Newton Calibration | M. Smith | 18th XMM-Newton Users' Group Meeting | 11/05/2017 | Slide 38

4

· = ■ ▶ = = + ■ + ■ = ≝ = ■ ■ ■ = = = ₩ ₩ ₩ ₩

Additional Future Calibration Activities

- EPIC-pn: Include Cu-Ka fluorescence emission (8.0 keV) in the long-term CTI correction; will complement the existing data points at 1.5 keV (Al-Ka) and 5.9 keV (Mn-Ka).
- OM: Continued study of time-dependent sensitivity degradation.
- RGS: Re-evaluation of effective area corrections. Assessment of background templates and background correction methods.

Cross-Calibration:

Streamlining the XMM-Newton Cross Calibration Archive in order to improve flexibility in validating calibration products.

XMM-Newton Calibration | M. Smith | 18th XMM-Newton Users' Group Meeting | 11/05/2017 | Slide 39

- 228 exposures
- on and off-axis •
- point and extended sources

+ || = 🖺 = || || = = 🕮 = 🖾 || = 🕄 🗗

Summary of Calibration Plans & Activities

- EPIC encircled energy correction: new XRTn XPSF parameters
- EPIC CORRAREA: recalibration extended validation

ESA UNCLASSIFIED - For Official Use

- EPIC-pn quiescent background gain correction in SAS 17
- EPIC-pn empirical RMF modelling
- Implications of mirror contaminant simulations
- Re-evaluation of EPIC-pn fast mode energy scale corrections

Summer 2017 Autumn 2017

Summer 2017

End of 2017

In progress

XMM-Newton Calibration | M. Smith | 18th XMM-Newton Users' Group Meeting | 11/05/2017 | Slide 40

