XMM-Newton Calibration

Michael Smith, on behalf of XMM-SOC and Instrument Teams

18th XMM-Newton Users’ Group Meeting, ESAC, 11 May 2017
Outline

1. Status of calibration related to the Users’ Group resolutions and recommendations

2. Calibration monitoring and improvements over the last 12 months

3. Additional future calibration activities
2016 UG Recommendations

Recommendation 2016-06-08/01:

- As result of some recent investigations, there is now a requirement to implement an iterative adjustment to the parameters for the 2-D PSF. [...] This activity needs to be considered as of the highest priority because of its impact on many other aspects of the calibration.

Recommendation 2015-05-22/02: The UG identifies the following tasks in order of priority;

1. Cross-calibration of the responses of the XMM-Newton X-ray cameras and spectrometers. This is a longstanding issue, and it should be resolved as far as is possible in the near future.
2. Evidence for a shift in gain of the PN detectors, which is dependent on the quiescent background. This should be investigated and quantified, and a correction implemented.
3. Calibrated spectra from NuSTAR and XMM-Newton sometimes show a significant mis-match in spectral slope and offset above 3keV. This is a matter which the IACHEC should be encouraged to investigate.
4. Complete the calibration of the PN Burst Mode, RDPHA correction.

Recommendation 2016-06-08/02:

- The time and energy reconstruction of the pn Timing mode should be studied with respect to recently observed discrepancies.
EPIC: PSF Investigations

PKS 2155-304
- Piled-up
- Annular extraction regions for EPIC

Sample of non-piled-up on-axis sources

Read el al. 2014
EPIC: PSF Investigations

NGC 5506 (Seyfert 2)

Dominated (>90%) by point source emission.

PN spectral comparison:

- annuli from 20″-25″ to 40″-45″
- compared with 20″ circle

Other sources show similar results
EPIC: PSF Investigations

- Systematics in the current PSF modelling for all 3 XRTs
- Hopefully can be improved by tuning the PSF model parameters
- Source sample consists of 11 observations of bright non-piled-up point sources located at the nominal aim point
- 5-6 nested annuli being compared (up to 60” outer radius)
- 2 PSF model parameters (r0 and a) being varied – changes affect off-axis angles < 3’
Iterative scheme for the empirical correction of XRT XPSF parameters:

- Per source:
 - Extract spectrum from circular region
 - Extract spectra from several nested annular regions
 - Create respective RMFs
 - Create respective ARFs
 - Fit model to circular region spectrum
 - Apply this as reference model to annular spectra, derive residuals

- For all annular spectra, and all sources, determine a suitable statistic:
 \[
 \sum_i \frac{(d_i - m_i)^2}{e_i^2}
 \]

- Modify ELLBETA parameters in order to minimise the statistic
EPIC: PSF Investigations

XRT3
0.50 keV
Public Candidate
1.00 keV
6.00 keV
8.00 keV
10.00 keV

XRT2
0.50 keV
Public Candidate
1.00 keV
6.00 keV
8.00 keV
10.00 keV

XRT1
0.50 keV
Public Candidate
1.00 keV
6.00 keV
8.00 keV
10.00 keV
EPIC: PSF Investigations

PN: MCG-5-23-16
EPIC: PSF Investigations

PN: Mkn 6
EPIC: PSF Investigations

MOS2: PKS B1334-127

XMM-Newton Calibration | M. Smith | 18th XMM-Newton Users’ Group Meeting | 11/05/2017 | Slide 11
EPIC: PSF Investigations

Mean Normalised Flux per Energy Band

MOS1
MOS2

Public XRTn CCFs

Mean Normalised Flux per Energy Band

MOS1
MOS2

Candidate XRTn CCFs

0.1 0.33 0.54 0.80 1.20 1.50 1.82 2.20 3.50 5.50 10.0

0.1 0.33 0.54 0.80 1.20 1.50 1.82 2.20 3.50 5.50 10.0

Normalized to PN

Normalized to PN
Recommendation 2016-06-08/01:

- As result of some recent investigations, there is now a requirement to implement an iterative adjustment to the parameters for the 2-D PSF. [...] This activity needs to be considered as of the highest priority because of its impact on many other aspects of the calibration.

Recommendation 2015-05-22/02: The UG identifies the following tasks in order of priority:

1. Cross-calibration of the responses of the XMM-Newton X-ray cameras and spectrometers. This is a longstanding issue, and it should be resolved as far as is possible in the near future.

2. Evidence for a shift in gain of the PN detectors, which is dependent on the quiescent background. This should be investigated and quantified, and a correction implemented.

3. Calibrated spectra from NuSTAR and XMM-Newton sometimes show a significant mis-match in spectral slope and offset above 3keV. This is a matter which the IACHEC should be encouraged to investigate.

4. Complete the calibration of the PN Burst Mode, RDPHA correction.

Recommendation 2016-06-08/02:

- The time and energy reconstruction of the pn Timing mode should be studied with respect to recently observed discrepancies.
RGS: Effective Area Correction

Algorithm and Implementation:

Time and wavelength dependent correction RGS1 and RGS2, 1st and 2nd order

For each 0.05 Å bin:

\[t < 0.538 \quad P_1 + \left(\frac{t}{0.538} \right) P_2 \]

\[0.538 \leq t < 1.408 \quad P_1 + P_2 + P_5 + \left(\frac{t - 0.538}{0.870} \right) P_3 \]

\[1.408 \leq t < 2.112 \quad P_1 + P_2 + P_3 + P_5 + P_7 + \left(\frac{t - 1.408}{0.704} \right) P_4 \]

\[2.112 \leq t < 2.816 \quad P_1 + P_2 + P_3 + P_4 + P_6 + P_7 + \left(\frac{t - 2.112}{0.704} \right) P_5 \]

\[t > 2.816 \quad P_1 + P_2 + P_3 + P_4 + P_5 + P_6 + P_7 + \text{narrow gaussians at specific wavelengths} \]

Estimated calibration uncertainty of the effective area after the application of this correction:

1-2% in first order

Algorithm and Implementation:

- Correction
- \(P_1, P_2, P_3, P_4, P_5, P_6, P_7 \)
- \(t = \text{rev} \)
- \(P_1 \) correction at time 0
- \(P_2 - P_5 \) slopes
- \(P_6 \) discontinuity at cooling
- \(P_7 \) discontinuity at change to RGS2
- Single Node Readout mode

Implemented in SASv16 as a non-default option

new CCF issued

XMM-CCF-REL-340

J. Kaastra, C. de Vries & J.W. den Herder
RGS: Effective Area Correction

Testing: RGS1 v. RGS2

3C 273 @ rev 1465

![Graph showing RGS1 and RGS2 with and without effective area correction](image)

- **without correction**
 - RGS1
 - RGS2

- **with correction**
 - RGS1
 - RGS2

residuals with respect to best fit RGS1 model [two absorbed power-laws]
RGS: Effective Area Correction

Testing: RGS1 v. RGS2

Model: two absorbed power-laws

Independent RGS1 and RGS2 fits

<table>
<thead>
<tr>
<th></th>
<th>RGS1</th>
<th>RGS2</th>
</tr>
</thead>
<tbody>
<tr>
<td>(N_H (10^{20}))</td>
<td>(2.28^{+0.55}_{-0.56})</td>
<td>(1.89^{+0.95}_{-0.79})</td>
</tr>
<tr>
<td>(1.85^{+0.53}_{-0.52})</td>
<td>(2.19^{+0.77}_{-0.69})</td>
<td></td>
</tr>
<tr>
<td>Slope power-law #1</td>
<td>(1.68^{+0.15}_{-0.33})</td>
<td>(1.68^{+0.17}_{-0.41})</td>
</tr>
<tr>
<td>(1.51^{+0.22}_{-0.43})</td>
<td>(1.52^{+0.26}_{-0.56})</td>
<td></td>
</tr>
<tr>
<td>Norm ((10^{-2})) power-law #1</td>
<td>(3.61^{+0.41}_{-1.02})</td>
<td>(3.52^{+0.42}_{-1.28})</td>
</tr>
<tr>
<td>(3.13^{+0.67}_{-1.20})</td>
<td>(3.20^{+0.78}_{-1.52})</td>
<td></td>
</tr>
<tr>
<td>Slope power-law #2</td>
<td>(3.61^{+0.76}_{-0.70})</td>
<td>(3.69^{+1.18}_{-0.97})</td>
</tr>
<tr>
<td>(3.16^{+0.70}_{-0.52})</td>
<td>(3.20^{+0.93}_{-0.65})</td>
<td></td>
</tr>
<tr>
<td>Norm ((10^{-2})) power-law #2</td>
<td>(0.56^{+0.94}_{-0.34})</td>
<td>(0.43^{+1.19}_{-0.31})</td>
</tr>
<tr>
<td>(0.97^{+1.14}_{-0.61})</td>
<td>(1.01^{+1.45}_{-0.69})</td>
<td></td>
</tr>
</tbody>
</table>

Graphs

- **without correction**
- **with correction**
RGS: Effective Area Correction
Testing: RGS2 / RGS1 Flux Ratio

Based on observations of PKS 2155-304 and 3C 273
RGS: Effective Area Correction
Testing: RGS to EPIC-pn Rectification Factors

Based on 42 observations of bright BL Lac
EPIC-pn in Small Window mode
EPIC: Update of the CORRAREA Correction

The CORRAREA tool was implemented in SAS 14 (autumn 2014):

- Applies an empirical correction to the EPIC effective areas.
- Can be used to evaluate the impact that the current relative EPIC A_{eff} uncertainties have on astrophysical parameters derived from spectral fitting.
- Currently, a non-default SAS option.

A recalibration and full validation of the CORRAREA correction is currently being undertaken:

- Based on SAS 15.1, and latest calibration (as of Oct 2016).
- Revised screening: common GTIs, background selections, pile-up evaluation.
- Largely automated pipeline from data reduction to spectral and residual fitting.
- A new CORRAREA correction is close to release (⇒ summer 2017).

Outlook:

- Include a wider sample of sources, observing modes (LW, SW) and filters (Thick) (⇒ autumn 2017).
- Cross-mission comparison in order to justify absolute A_{eff} correction.
Mirrors: Effective Area Simulations

- In mid 2016 an investigation (by D. Lumb) was started into possible unaccounted for mirror contamination present pre-launch.

- Using industry reports on expected contamination, SciSim was used to compare telescope effective areas. Results show the currently implemented values are inconsistent.

- The discrepancies are telescope-dependent, implying absolute and relative changes to the EPIC (and RGS) effective area calibration.

- Progress has been made, resulting in preliminary estimates based on the best knowledge of the telescope contamination. Assuming this contamination is present after launch this would mean:
 - Absolute changes in telescope effective area: ~ 2 - 4%.
 - Relative changes between EPICs (esp. XRT3 and XRT1/2): ~ 0 – 3%.
2016 UG Recommendations

Recommendation 2016-06-08/01:
• As result of some recent investigations, there is now a requirement to implement an iterative adjustment to the parameters for the 2-D PSF. […] This activity needs to be considered as of the highest priority because of its impact on many other aspects of the calibration.

Recommendation 2015-05-22/02: The UG identifies the following tasks in order of priority;
1. Cross-calibration of the responses of the XMM-Newton X-ray cameras and spectrometers. This is a longstanding issue, and it should be resolved as far as is possible in the near future.
2. Evidence for a shift in gain of the PN detectors, which is dependent on the quiescent background. This should be investigated and quantified, and a correction implemented.
3. Calibrated spectra from NuSTAR and XMM-Newton sometimes show a significant mis-match in spectral slope and offset above 3keV. This is a matter which the IACHEC should be encouraged to investigate.
4. Complete the calibration of the PN Burst Mode, RDPHA correction.

Recommendation 2016-06-08/02:
• The time and energy reconstruction of the pn Timing mode should be studied with respect to recently observed discrepancies.
PN: Quiescent Background Gain Correction

- Details of the quiescent background gain correction (QBGC) were presented at the 2016 Users’ Group meeting.

- In order to correct the PN gain, the discarded line rate is used as proxy for the quiescent background.

- Original implementation envisaged the use of an observation averaged rate, already stored in the events file (NDISCLIN keyword).

- However, the QB may vary significantly within an observation, necessitating the use of the instantaneous discarded line rates, included in the housekeeping data stream.

- This requires a fundamentally different implementation at S/W level.

- Main issue is the robust handling of telemetry gaps, outlier values, intrinsic noise.

⇒ Aim is for SAS 17 implementation (end of 2017).
2016 UG Recommendations

Recommendation 2016-06-08/01:
• As result of some recent investigations, there is now a requirement to implement an iterative adjustment to the parameters for the 2-D PSF. [...] This activity needs to be considered as of the highest priority because of its impact on many other aspects of the calibration.

Recommendation 2015-05-22/02: The UG identifies the following tasks in order of priority;
1. Cross-calibration of the responses of the XMM-Newton X-ray cameras and spectrometers. This is a longstanding issue, and it should be resolved as far as is possible in the near future.
2. Evidence for a shift in gain of the PN detectors, which is dependent on the quiescent background. This should be investigated and quantified, and a correction implemented.
3. Calibrated spectra from NuSTAR and XMM-Newton sometimes show a significant mis-match in spectral slope and offset above 3keV. This is a matter which the IACHEC should be encouraged to investigate.
4. Complete the calibration of the PN Burst Mode, RDPHA correction.

Recommendation 2016-06-08/02:
• The time and energy reconstruction of the pn Timing mode should be studied with respect to recently observed discrepancies.
EPIC-pn / NuSTAR Comparison

Comparison of 18 AGN spectra:
- PN imaging modes
- Strictly simultaneous PN-NuSTAR data
- Models fit to PN
 ⇒ Systematic NuSTAR residuals
 ⇒ Slope differences of ~0.15

However:
- Recent NuSTAR results (Madsen et al. 2017, comparing focused with non-focused measurements of the Crab) confirm NuSTAR normalisation underestimated by ~ 10%.
- Change in PSF parameters may affect EPIC spectral slope.
2016 UG Recommendations

Recommendation 2016-06-08/01:
• As result of some recent investigations, there is now a requirement to implement an iterative adjustment to the parameters for the 2-D PSF. [...] This activity needs to be considered as of the highest priority because of its impact on many other aspects of the calibration.

Recommendation 2015-05-22/02: The UG identifies the following tasks in order of priority;
1. Cross-calibration of the responses of the XMM-Newton X-ray cameras and spectrometers. This is a longstanding issue, and it should be resolved as far as is possible in the near future.
2. Evidence for a shift in gain of the PN detectors, which is dependent on the quiescent background. This should be investigated and quantified, and a correction implemented.
3. Calibrated spectra from NuSTAR and XMM-Newton sometimes show a significant mis-match in spectral slope and offset above 3keV. This is a matter which the IACHEC should be encouraged to investigate.
4. Complete the calibration of the PN Burst Mode, RDPHA correction.

Recommendation 2016-06-08/02:
• The time and energy reconstruction of the pn Timing mode should be studied with respect to recently observed discrepancies.
PN: Timing & Burst Mode Issues

PN Timing Mode observations show several cases of sources with:

- larger than expected residuals at instrumental edges
- significant differences in line energies with respect to e.g. grating data (up to 70 eV at ~ 6 keV)

Sources are in the moderate count rate regime.
Possible issue with rate dependent correction in Timing Mode (and Burst Mode).

The chain of corrections affecting the TI & BU mode energy scale is being systematically evaluated.

Work in progress...

- Rate dependent correction (pattern recognition)
- Find event patterns
- Rate dependent correction (applied to charges)
- Gain correction
- Mode-specific gain correction
- CTI correction
- Long-term CTI correction
- CCD offset correction
Outline

1. Status of calibration related to the Users’ Group resolutions and recommendations

2. Calibration monitoring and improvements over the last 12 months

3. Additional future calibration activities
Summary of Calibration Monitoring

- EPIC bad pixels (XMM-CCF-REL-338)
- EPIC background and offset maps (XMM-CCF-REL-339)
- EPIC energy scale (XMM-CCF-REL-336)
- EPIC variable boresight (XMM-CCF-REL-343)
- EPIC-MOS contamination
- EPIC-pn flux stability
- EPIC-pn timing

- OM sensitivity degradation (XMM-CCF-REL-346)
- OM photometric stability
- OM grism flux stability
- OM astrometry
- OM variable boresight (XMM-CCF-REL-343)

- RGS bad columns (XMM-CCF-REL-347)
- RGS wavelength scale
- RGS CTI & gain (XMM-CCF-REL-345)
- RGS background
- RGS contamination
- RGS flux stability
- RGS offsets (XMM-CCF-REL-342)
RGS: Contamination Monitoring

Carbon contamination layer building-up slowly

No changes in the trend
RGS: Bad Surface Monitoring

- **<<1% of detector surface**
- **<1.5% of detector surface**

Graphs:*

1. **Columns found hot in >95% of the observations**
2. **Columns found hot in >25% of the observations**

Legend:
- RGS1
- RGS2

Yearly Data:
- 2000: 5, 36
- 2001: 6, 34
- 2002: 3, 30
- 2003: 4, 20
- 2004: 1, 21
- 2005: 3, 24
- 2006: 4, 21
- 2007: 4, 17
- 2008: 4, 17
- 2009: 4, 17
- 2010: 3, 17
- 2011: 3, 17
- 2012: 3, 17
- 2013: 3, 17
- 2014: 4, 16
- 2015: 4, 16
- 2016: 3, 17

Note:
- XMM-SOC-CAL-TN-0209
- C.Gabriel

Slide 30
RGS: Wavelength Scale Monitoring

Bright sample
85 observations of AB Dor, Capella, HR 1099 and Procyon

Faint sample
70 observations of fainter emission line stars

Heliocentric and Sun angle corrections applied; most recent XMM variable boresight
MOS: Contamination Monitoring

Primary monitoring source: SNR 1E0102

Contamination status shows no change in trend:

- MOS1 stable
- MOS2 steadily increasing
OM: Time Sensitivity Degradation

Originally based on linear fit to standard stars: OM_PHOTTONAT_0005.CCF

Now based on a quadratic fit to selected catalogue sources: OM_PHOTTONAT_0006.CCF
OM: Time Sensitivity Degradation

Testing of the new correction on standard stars:

- old correction

- new correction
OM: Repeatability of Filter Photometry

SAS 16 data processing:
Count rates (cts/s) of standard stars observed regularly since 2001:

<table>
<thead>
<tr>
<th>Star</th>
<th>Nobs</th>
<th>UVW2</th>
<th>UVM2</th>
<th>UVW1</th>
<th>U</th>
<th>B</th>
<th>V</th>
</tr>
</thead>
<tbody>
<tr>
<td>GD 153</td>
<td>14</td>
<td>83.1</td>
<td>161.8</td>
<td>329.5</td>
<td>420.5</td>
<td>283.5</td>
<td>71.4</td>
</tr>
<tr>
<td>error (%)</td>
<td>1.4</td>
<td>1.5</td>
<td>0.8</td>
<td>1.4</td>
<td>1.0</td>
<td>2.1</td>
<td></td>
</tr>
<tr>
<td>Hz 2</td>
<td>17</td>
<td>23.8</td>
<td>48.3</td>
<td>111.7</td>
<td>168.8</td>
<td>148.8</td>
<td>43.7</td>
</tr>
<tr>
<td>error (%)</td>
<td>2.0</td>
<td>1.3</td>
<td>1.3</td>
<td>0.9</td>
<td>0.8</td>
<td>2.9</td>
<td></td>
</tr>
<tr>
<td>BPM 16274</td>
<td>32</td>
<td>14.7</td>
<td>30.3</td>
<td>72.9</td>
<td>112.7</td>
<td>107.8</td>
<td>33.0</td>
</tr>
<tr>
<td>error (%)</td>
<td>1.7</td>
<td>1.2</td>
<td>1.0</td>
<td>0.8</td>
<td>0.8</td>
<td>2.2</td>
<td></td>
</tr>
</tbody>
</table>
OM: Serendipitous UV Source Survey

- New version 3 of the XMM-Newton Serendipitous Source Survey ("the OM Catalogue"): SUSS3
- Released in March 2017
- Observations till mid-2015:
 - 7866 XMM-Newton pointings
 - 6.9 million entries
 - 4.8 million sources
 - 0.9 million sources with multiple observations
- Full reprocessing with SAS 15 & new time-dependent sensitivity degradation correction (OM_PHOTONAT_0006.CCF)
- New flag: Sky Image to identify sources detected in mosaic / stacked images
- Available through the ESA XSA: query I/F or full catalogue download
- Catalogue sources can be overlaid in the ESA-Sky utility

UV data from the XMM-Newton Optical Monitor

UVW1 filter (291 nm):
- 75 exposures (2001 – 2015)
- 221 ks exposure time
1. Status of calibration related to the Users’ Group resolutions and recommendations

2. Calibration monitoring and improvements over the last 12 months

3. Additional future calibration activities
Additional Future Calibration Activities

EPIC-pn: Include Cu-Ka fluorescence emission (8.0 keV) in the long-term CTI correction; will complement the existing data points at 1.5 keV (Al-Ka) and 5.9 keV (Mn-Ka).

OM: Continued study of time-dependent sensitivity degradation.

RGS: Re-evaluation of effective area corrections.
Assessment of background templates and background correction methods.

Cross-Calibration:
Streamlining the XMM-Newton Cross Calibration Archive in order to improve flexibility in validating calibration products.

- 51 targets
- 228 exposures
- on and off-axis
- point and extended sources

Additional Future Calibration Activities
Summary of Calibration Plans & Activities

- EPIC encircled energy correction: new XRTn XPSF parameters (Summer 2017)
- EPIC CORRAREA:
 - recalculation (Summer 2017)
 - extended validation (Autumn 2017)
- EPIC-pn quiescent background gain correction in SAS 17 (End of 2017)
- EPIC-pn empirical RMF modelling
- Implications of mirror contaminant simulations (In progress)
- Re-evaluation of EPIC-pn fast mode energy scale corrections