Probing general relativistic precession with tomography and polarimetry

Adam Ingram

Michiel van der Klis, Matt Middleton, Chris Done, Diego Altamirano, Phil Uttley, Magnus Axelsson, Tom Maccarone, Juri Poutanen, Henric Krawczynski, Matthew Liska, Casper Hesp, Sasha Tchekhovskoy, Sera Markoff

X-ray Universe - Rome

Black hole X-ray binaries

- Unique laboratories for strong field GR
- Probe relativistic motions of orbiting material in strong gravitational fields
- Too small to directly image

Black hole X-ray binaries

3

ANTON PANNEKOEK Institute Spectral states

Frame dragging

Frame dragging

 $H/R > \alpha$ ۲۰۰۰٬۰۰۰٬۰۰۰٬۰۰۰٬۰۰۰٬۰۰۰٬۰۰۰٬۰۰٬۰۰٬۰۰۰٬۰۰٬۰۰٬۰۰۰٬۰ 80 60 40 20 0 Z-Axis -20 -40 -60 Credit: Matthew Liska -80

Solid body precession at average LT frequency

Fragile et al (2007); Liska et al (in prep)

$H/R < \alpha$

Viscosity aligns inner regions with the BH and outer regions with the binary partner

Bardeen & Petterson (1975)

Ingram, Done & Fragile (2009)

Frame dragging

Tell-tale sign of precession: a rocking iron line

Precession in H 1743-322¹²

Interpretation

13

Ingram et al (2017)

https://figshare.com/articles/Tomographic_modelling_of_H_1743-322/3503933

Ingram et al (2017)

Polarization

15

www.youtube.com/watch?v=ieZYYfCapJg&feature=youtu.be

Ingram et al (2015)

16

Can we make a time series?

19

- IXPE count rate $\sim 100 \text{ c/s}$
- p_0 of source < ~10%
- Integration time:
 T ~ 4 minutes!

So can't probe variability on timescales of seconds 🛞

Can we make a time series?

19

- IXPE count rate $\sim 100 \text{ c/s}$
- p_0 of source < ~10%
- Integration time:
 T ~ 4 minutes!

Can use phase-folding for periodicities like pulses, but NOT for QPOs and noise 🟵

20 X-ray polarimetry-timing

p₀ varies: amplitude of distribution varies

Ingram & Maccarone (in prep)

Can measure the amplitude and phase of each of these light curves using standard cross-spectral techniques

Ingram & Maccarone (in prep)

23

Simulated 200 ks IXPE exposure:

Proposed missions:

XIPE (ESA M4 candidate): $2 \times$ area = even better

eXTP (Chinese-led): $2-5 \times \text{area} + \text{large area detector} = \text{even better still}$

Fractional RMS (%) 10 5 100 200 300 0.01 Phase (cycles) 0 -0.01 100 200 300 0

Ingram & Maccarone (in prep)

 $\boldsymbol{\psi}$ (degrees)

Jet precession

24

Liska, Hesp, Tchekovskoy, Ingram et al (in prep)

- The centroid energy of the iron line in H 1743-322 is modulated on the QPO frequency => LT precession!
- First instance of tomographic mapping
- X-ray polarimetry-timing provides orthogonal test and powerful probe of the accretion geometry
- This should be possible with IXPE
- XIPE and eXTP will be even better!
- Method not just for QPOs: any kind of stochastic variability!
- Predict jet precession with high-res GRMHD simulations