Pulsing ULXs as highly magnetized neutron stars

Alex Mushtukov, <u>Valery Suleimanov</u> Sergey Tsygankov, Juri Poutanen

The X-ray Universe 2017 Juni 06, 2017, Rome, Italy

Outlook

Introduction. Pulsing ULXs.

Accretion columns. Basic ideas.

Maximum possible luminosities. Magnetic opacities importance. Geometry of accretion flow importance.

Conclusions.

Pulsing ULXs

Pulsing ULX M82 X-2 (Bachetti et al., Nature, 2014) L ≈10⁴⁰ erg s⁻¹, P ≈1.37 s

Pulsing ULX in NGC 5907 (Israel et al., Science 2017) L >10⁴¹ erg s⁻¹, P ≈1.43-1.13 s

Pulsing ULX in NGC 7793 P13 (Israel et al., MNRAS 2017)

 $L > 2 \ 10^{39} \text{ erg s}^{-1}$, $P \approx 0.42 \text{ s}^{-1}$

Many transient X-ray pulsars have higher luminosities during giant (type II) outbursts

Super-Eddington fluxes. Magnetic field importance. 1 $f_L >> g \rightarrow F >> F_{Edd}$ 0 High free falling matter Luminosity $>10^{38} erg s^{-1}$ Kulkarni & Romanova 2013 deceleration Lorentz surface ſ force g Eddington flux F_{Edd} from $f_{rad} = g$ н gravity slowly settling rad matter or "accretion column" f rad radiation NS d NS pressure Eddington luminosity $L_{Edd} = \frac{4\pi GMc}{0.2(1+X)} \approx 1.4 \cdot 10^{38} \frac{M}{M_{\odot}}$ erg s⁻¹

Models: Some previous works

Radiation supported accretion column Main assumptions

on the base of Lubarsky & Sunyaev 1988 and Basko & Sunyaev 1976

Vertical direction Hydrostatic equilibrium $F_{II}(h) = F_{Edd}(h), P_{tot} \approx P_{rad} \approx \frac{\varepsilon_{rad}}{3} = \frac{aT^4}{3}$ $\frac{dP_{rad}(h)}{...} = -\rho \frac{\kappa_{II}F_{Edd}(h)}{...}$ dh magnetic escaping Horizontal direction opacities lateral flux **Radiation transfer** F(h) $\frac{d\varepsilon_{rad}(x,h)}{dx} = -3\rho \frac{\kappa_{\perp}F_{\perp}(h)}{c} \frac{2x}{d}$ $F_{Fdd}(h)$

optically thick structure

X

h

2

Η

Radiation supported accretion column Toy model: Constant density.

Vertical direction

Hydrostatic equilibrium

$$\varepsilon_{rad}(0,h) \approx 3 \frac{\tau_{\scriptscriptstyle II}}{c} F_{\scriptscriptstyle Edd}(h)$$

Radiation supported accretion column Toy model: Constant density.

$$F_{\perp}(h) \approx 2 \frac{\tau_{II}}{\tau_{\perp}} F_{Edd}(h)$$

Integration over the surface

$$L \approx 40 \left(\frac{l/d}{50}\right) \left(\frac{\kappa_T}{\kappa_{\!\scriptscriptstyle \perp}}\right) f(H/R) \; L_{_{\!\! Edd}}$$

$$L^{**}(H=R) \approx 2 \times 10^{39} \left(\frac{l/d}{50}\right) \left(\frac{\kappa_T}{\kappa_{\perp}}\right) \text{ erg s}^{-1}$$

 $H(x) \approx H\left(1 - 4\frac{x^2}{d^2}\right)$ approximate parabolic shape

Magnetic opacities

Description of the radiation transfer using two normal modes

Photon energy

E = hv

Cyclotron energy

$$E_c = 11.5 \ (B/10^{12} \ G) \ \text{keV}$$

Magnetic opacities

Magnetic opacities

Averaging over thermal spectrum is important

$$kT \ge E_C \quad \Longrightarrow \quad \kappa_{\!\!\!\perp} \approx \kappa_T$$

Accretion geometry importance Low luminosity. Gas pressure dominated disc.

Assumption: accretion curtain thickness equals accretion disc thickness

 $Z_C = H_D$

Numerical (pseudo) one-dimensional model. Final assumptions.

Aim is to find the column height H which corresponds to given L

Iteration scheme, because κ_{\perp} depends on temperature T

Numerical (pseudo) one-dimensional model. Some results.

Higher NS magnetic field strength $B \rightarrow$ less opacity κ_{\perp} and optical thickness $\tau_{\perp} \rightarrow$ higher effective temperature T_{eff} less column height at the same luminosity or higher luminosity at the same column height Maximum possible luminosities vs. B

Application to M 82 X-2

Application to other pulsing ULXs

Optically thick envelopes around pulsing ULXs

Mushtukov et al. 2017

Possible propeller effect in M 82 X-2 Tsygankov et al. 2016

Transitions due to propeller effect at $R_m = R_{CO}$?

Conclusions

Our simplified model can qualitatively explain high luminous X-ray pulsars existence with luminosities up to 10⁴⁰ erg s⁻¹ typical for M82 X-2 assuming high magnetic field strength (10¹⁴ -10¹⁵ G).

Possible luminosity transitions in M82 X-2 due to propeller effect confirm B ~10¹⁴ G (Tsygankov et al. 2016).

Accretion geometry is very important and cannot be correctly included at the moment. There is potential possibility for maximum luminosities increasing due to geometry effects.

