Using X-ray velocity measurements as a new probe of AGN feedback in massive galaxies

Anna Ogorzalek

KIPAC, Stanford

with Irina Zhuravleva, Steve Allen, Ciro Pinto, Norbert Werner, Adam Mantz, Becky Canning, Andrew Fabian, Jelle Kaastra, and Jelle de Plaa

X-ray Universe, Rome, June 9 2017

Feedback in massive galaxies:

Feedback in massive galaxies: What is providing the energy? How is the energy dissipated? Feedback in massive galaxies: What is providing the energy? How is the energy dissipated?

AGN feedback and many more e.g. Fabian+2012 e.g. cosmic ray heating, weak shocks bubble mixing, radiative turbulent heating, turbulent mixing ... & sound waves dissipation e.g. Fabian+2003, e.g. Zhuravleva+2014 Forman+2007

Feedback in massive galaxies: What is providing the energy? **How** is the energy dissipated?

AGN feedback e.g. Fabian+2012 weak shocks & sound waves e.g. Fabian+2003, Forman+2007 e.g. Zhuravleva+2014 What is the role of turbulence in AGN feedback in giant galaxies?

Werner+2009

Measuring turbulent velocities in massive galaxies

Measuring turbulent velocities in massive galaxies

 Directly:
 spectral line broadening (e.g. Sanders+2013, Pinto+2015)

Indirectly:

resonant scattering (e.g. Xu+2002, Churazov+2004, Werner+2009, de Plaa+2012)

Pinto+2015

Resonant scattering

Gilfanov+1987, Shigeyama+1998, Sazonov+2002, Churazov+2010

Werner+2009, Pinto+2015, Ahoranta+2016, Ogorzalek+2017

Resonant scattering vs line broadening

Resonant scattering vs line broadening

V1D < 305 km/s

V1D > 35 km/s

Resonant scattering AND line broadening

Resonant scattering AND line broadening

V1D = 71 km/s 68% limits: 14-176 km/s

Ogorzalek+2017

Ogorzalek+2017

Hitomi Perseus: v ~190 km/s, inner ~30 kpc

Non-thermal pressure support

Ogorzalek+2017

Non-thermal pressure support

Hitomi Perseus: $\epsilon_{turb} / \epsilon_{thermal} \sim 4-8\%$, inner ~30 kpc Hitomi Collab. 2016

Can turbulence heat galaxy cores?

Can turbulence heat galaxy cores?

- $\triangleright | \mathbf{s} | Q_{turb} = Q_{cool}; \quad Q_{turb} \sim v_{1,k}^3 k$
- What are the spatial scales of motions?
 (Effective length? RGS aperture width?)

Can turbulence heat galaxy cores?

- $\triangleright \quad \mathsf{Is} \quad Q_{turb} = Q_{cool}? \quad Q_{turb} \sim v_{1,k}^3 k$
- What are the spatial scales of motions?
 (Effective length? RGS aperture width?)
- Typically in our sample turbulent heating is sufficient to offset the radiative cooling

V~ 110 km/s, L ~ 5 kpc \Rightarrow M_{bal} ~0.42 M_{obs}~0.44

Main uncertainties and assumptions

- Atomic data / plasma codes
- PSF of RGS and source spatial extent
- Abundance profiles
- Isotropy of motions
- Spherical symmetry of galaxies
- Kolomogorov spectrum of turbulence

Future: possibilities with RGS

- Unique science achievable only with RGS
- More RGS observations will allow to:
 - Measure velocities close to the black hole
 - Understand spatial scales of turbulence
 - Constrain presence of any velocity trends in the sample

Future: new X-ray missions

Ogorzalek+2017

Typical velocity broadening in galaxies: ~0.3 eV Athena's resolution: ~2 eV

Conclusions

- Our measurements of turbulence in 13 massive galaxies show a common velocity of ~110 km/s
- Turbulence is typically sufficient to offset radiative cooling in galactic cores
- To study heating and AGN feedback in detail we need more RGS observations, better understanding of spatial scales of motions, and more precise atomic data
- Resonant scattering serves as an important velocity probe, especially in galaxies, and is crucial for correct interpretation of future high resolution X-ray spectra

Thanks!