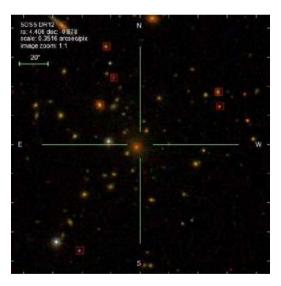
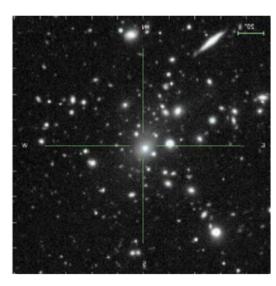
Groups and clusters in the 3XMM/SDSS Stripe 82 zone

Ali Takey^{1,2}, Florence Durret¹, Isabel Márquez³ Amaël Ellien¹, Eman Mahmoud², Adèle Plat¹

- 1. Institut d'Astrophysique de Paris, Paris, France
- 2. National Research Institute of Astronomy and Geophysics, Cairo, Egypt
 - 3. Instituto de Astrofísica de Andalucía, Granada, Spain

Institut d'astrophysique de Paris


Outline


- The 3XMM/SDSS Stripe 82 group and cluster survey
- The group/cluster catalogue
- X-ray properties
- Optical properties
- Discovery of two merging clusters

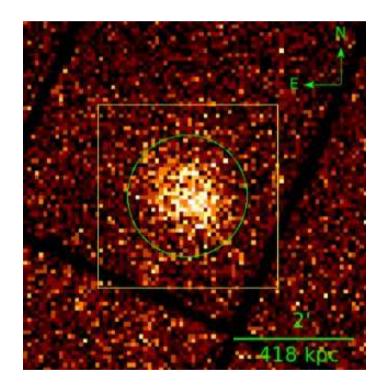
The SDSS Stripe 82 survey

- Equatorial zone: -50°<RA<60° and |DEC|≤1.25
- Coverage 270 deg²
- 13 x 10⁶ galaxies with photo-z and 10⁵ galaxies with zspec
- 50% completeness at r=23.5

SDSS DR12 image

Stripe 82 image

Systematic search for clusters in the Stripe 82 region with AMACFI:

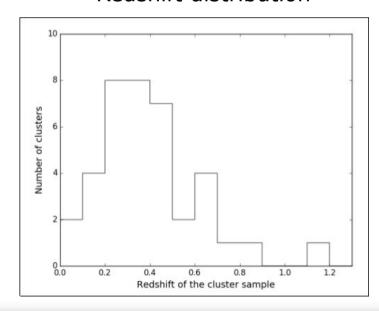

Durret et al. 2015, A&A 578, 79

Catalogue now being improved by Florian Sarron

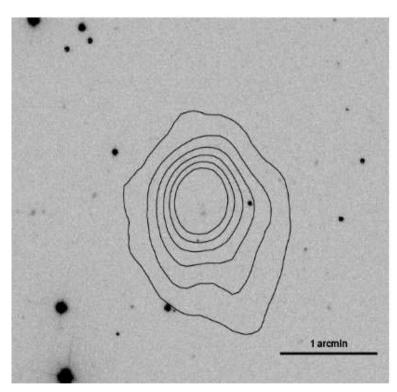
X-ray cluster candidates in the Stripe 82 region

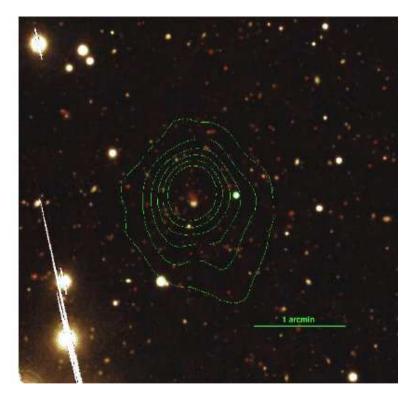
Systematic search for diffuse extended X-ray sources in XMM-Newton archive in the SDSS Stripe 82 zone

- 74 XMM observations
- Surveyed area: 11 deg²
- 120 extended detections, 94 cluster candidates



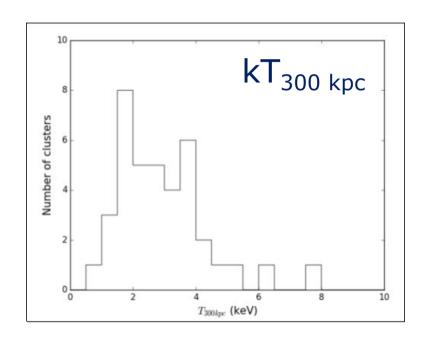
3XMM J001737.3-005240 $(z_{spec} = 0.2141)$

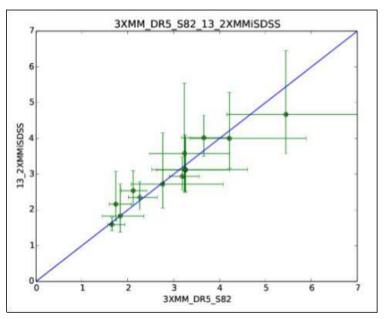

The sample with redshifts


- 51 groups or clusters with spectroscopic redshifts +
 3 with photometric redshifts
- 1/3 of them are new systems in X-rays
- 0.05 < z < 1.2
- 7 clusters at $z \ge 0.6$

Redshift distribution

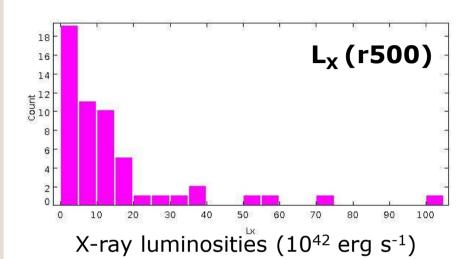
The most distant cluster (z>0.8) 2XMM J083026+524133

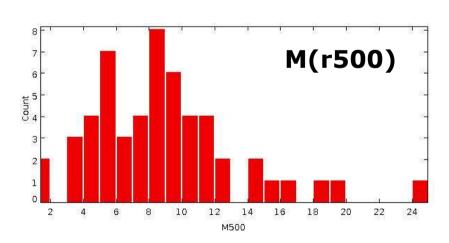




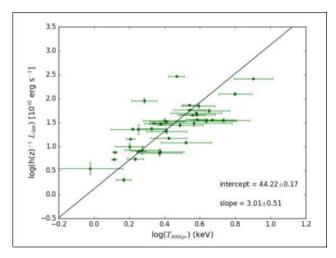
Large binocular telescope image + X-ray contours

R and z band S82 image + X-ray contours


X-ray properties: temperature



38 clusters with $kT_{300 \text{ kpc}}$ error < 50%

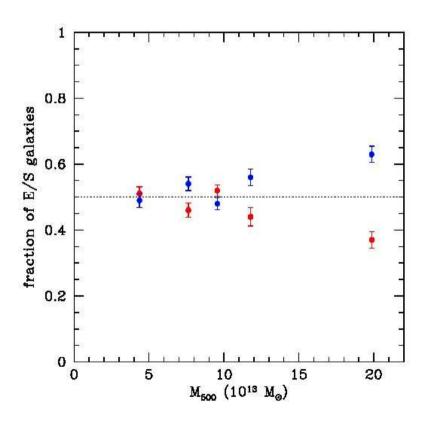

kT: comparison with 2XMMiSDSS

Cluster masses within r_{500} $\left(10^{13}\;\text{M}_{0}\;\right)$

L_X (r500)

 T_X (300 kpc)

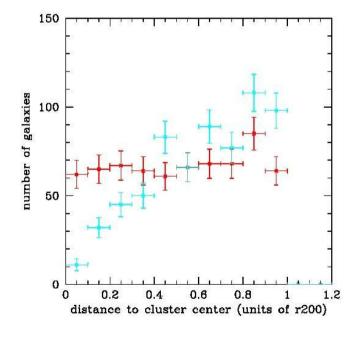
Takey et al. 2017, in prep.

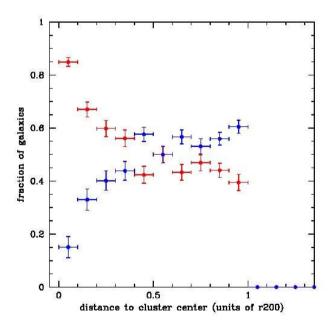

Optical properties of clusters: morphological segregation

- Stripe 82 images retrieved from Fliri & Trujillo at http://www.iac.es/proyecto/stripe82/index.php
- 4 or 9 images combined to reach 1 Mpc radius
- Images analysed with SExtractor after modeling of the PSF flux_{spheroid} and flux_{disk}
- Classification as early type if

$$flux_{spheroid} / (flux_{spheroid} + flux_{disk}) \ge 0.35$$

Results after stacking all the clusters:

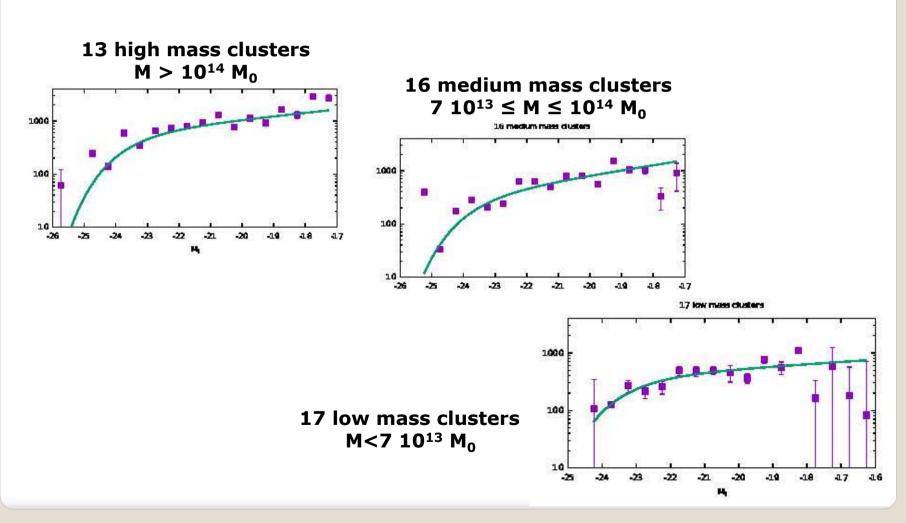

 The fraction of early type galaxies seems to decrease with cluster mass while the number of late type galaxies increases



early type late type

- The **number** of early type galaxies stays roughly constant with radius while the number of late type galaxies strongly increases with radius
- The fraction of early-type galaxies decreases and the fraction of late types increases with radius

early type late type

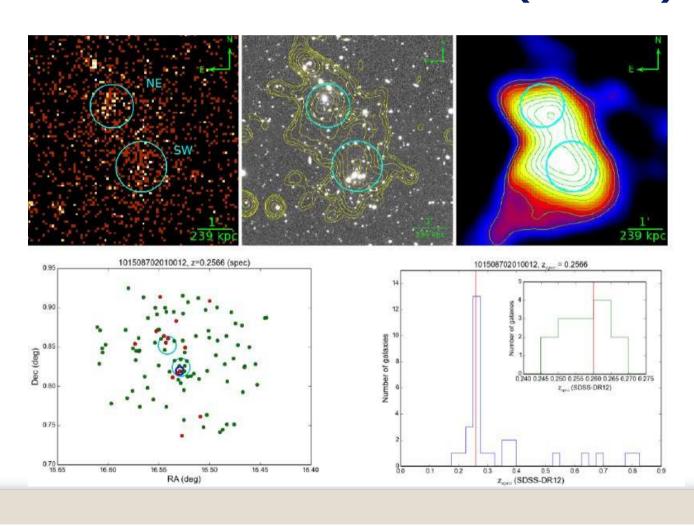


Galaxy luminosity functions (GLF)

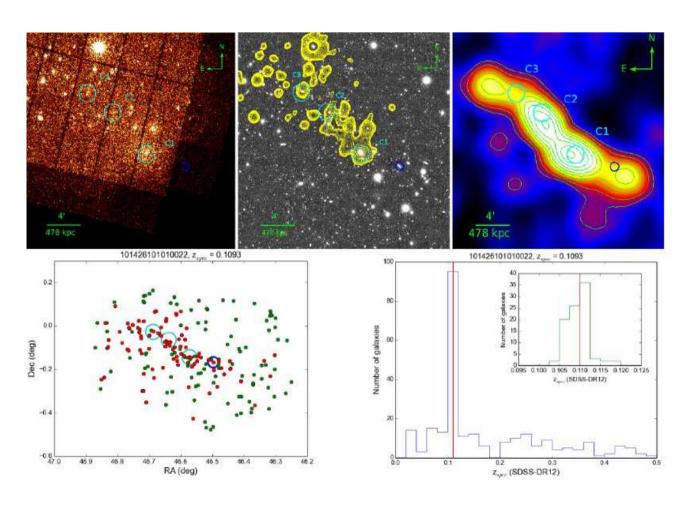
Method:

- Detections on rdeep image
- Galaxy-star separation
- Compare mag. histogram of stars to Besançon model
- Magnitude measurements in 5 bands (u, g, r, i, z)
- 5 band galaxy catalogue
 - Selection of galaxies along the red sequence for each cluster
 - Same selection applied to COSMOS catalogue by Laigle et al. (2016) to estimate the background
 - Apply k-correction, estimate galaxy counts in absolute magnitude bins
 - Fit of every GLF by a Schechter function
 - Cluster stacks in mass and redshift bins

Results for stacked clusters in three mass bins


Schechter fit parameters in the four bands g, r, i, z

	Low mass $(M < 7 \ 10^{13} \ {\rm M}_{\odot})$	Medium mass $(7 \ 10^{13} \le M \le 10^{14} \ \mathrm{M}_{\odot})$	High mass $(M > 10^{14} M_{\odot})$
Φ_g	311 ± 36	260 ± 25	152 ± 19
M_g^*	-26.00 ± 0.17	-23.60 ± 0.12	-25.60 ± 0.19
α_g	-1.054 ± 0.038	-1.306 ± 0.017	-1.360 ± 0.016
Φ_r	178 ± 106	304 ± 15	413 ± 38
M_r^*	-25.02 ± 1.53	-24.19 ± 0.06	-24.47 ± 0.11
α_r	-1.243 ± 0.051	-1.285 ± 0.010	-1.212 ± 0.020
Φ_i	413 ± 94	363 ± 16	647 ± 36
M_i^*	-23.66 ± 0.23	-24.02 ± 0.04	-23.95 ± 0.06
α_i	-1.099 ± 0.055	-1.240 ± 0.011	-1.159 ± 0.015
Φ_z	377 ± 110	152 ± 19	968 ± 57
M_z^*	-23.95 ± 0.33	-25.60 ± 0.19	-23.86 ± 0.06
α_z	-1.121 ± 0.075	-1.360 ± 0.017	-1.056 ± 0.023


No obvious variation of Schechter parameters with cluster mass

Merging clusters

3XMM J010606.7+004925 (z=0.26)

The multiple cluster Abell 412 (z=0.11)

Takey, Durret, Ahmed, Ali 2016, A&A 594, 32

Conclusions and perspectives

- Make galaxy density maps for the whole sample to characterize galaxy distributions
- Study the optical properties of the Brightest Cluster Galaxies
- Redo systematic search for clusters in entire Stripe 82 photometric redshift catalogue
- Correlate with public Planck SZ catalogue