The X-ray Universe 2017, Rome, 6 June 2017

Supernova shock break-out candidate in XMM-Newton archival data

Andrea Tiengo

Giovanni Novara, Andrea Belfiore, Martino Marelli, Gianni Lisini (IUSS Pavia), Giacomo Vianello (Stanford University), Ruben Salvaterra, Andrea De Luca, David Salvetti , Marco Scodeggio (IASF-Milano), Paolo D'Avanzo (OA Brera), et al.

FP7 Cooperation project funded by the European Union for 3 years (2014-2016).

Partners:

- **INAF**, Italy (*PI: Andrea De Luca*)
- IUSS Pavia, Italy
- CNR IMATI Genova, Italy
- University of Leicester (UK)
- **MPG MPE**, Germany
- FAU ECAP, Germany

EXTraS aims at exploiting the **serendipitous** content of the **XMM-Newton** archive in the **time domain** and to make it **publicly available** to the community

http://www.extras-fp7.eu

See talk by A. De Luca tomorrow at 5 p.m.

The EXTraS search for new X-ray transients

Duration of high confidence transients

The SN candidate: X-ray data

MOS1

ΡN

Entire observation (net exposure >20 ks)

The new transient is NOT visible in the whole observation

The SN candidate: X-ray data

Time interval: 315 s

The position is consistent with a blue galaxy with no redshift reported in literature

Follow-up optical observations

From CTIO* optical high resolution spectrum we derive a redshift of $z = 0.092 \pm 0.003$, corresponding to a distance of 424 Mpc

* (COSMOS spectrograph at the Blanco Telescope of the Cerro Totolo Inter-American observatory)

X-ray light curve

Time (s)

Bin time: 100.0 s

47 net counts by integrating the Gaussian profile

Comparison with SN2008D

The flare energy and duration are very similar to those of the X-ray transient associated to **SN2008D***, interpreted as the emission from the **shock break-out** of a core-collapse supernova

	SN 2008D	Transient source
d	27 Mpc (z=0.006494)	424 Mpc (z=0.092)
Fluence	2.3x10 ⁻⁷ erg cm ⁻²	8x10 ⁻¹⁰ erg cm ⁻²
Total energy	2x10 ⁴⁶ erg	1.7x10 ⁴⁶ erg
Peak luminosity	6.1x10 ⁴³ erg s ⁻¹	4.3x10 ⁴³ erg s⁻¹

X-ray **spectrum** possibly steeper than that of SN2008D*; $>3\sigma$ evidence for absorption > N_{H,Gal}=3x10²⁰ cm⁻²

* (Soderberg et al.,2008))

Supernova association

Being discovered in archival data, no follow-up optical observations to **search for a supernova**; no sufficiently deep archival optical observations; outside OM FoV during *XMM-Newton* observation

SN2008 was discovered during the observation of a SN-rich galaxy, whereas our discovery is serendipitous

http://www.nasa.gov/centers/goddard/news/topstory/2008/swift_supernova.html

Event Rate

- Serendipitous discovery

- Sky coverage of the EXTraS survey corresponds to the full sky observed by the PN for ~8 minutes
- From *preliminary* estimate of sensitivity (fluence ~ 5x10⁻¹⁰ erg cm⁻²), the **horizon** of the EXTraS survey is ~550 Mpc (z~0.12)

From this single detection, the *(preliminary)* event rate is 1.3×10^5 yr⁻¹ Gpc⁻³, consistent with Sorderberg et al. (2008) and a factor ~2 larger than core-collapse SN rate (~6x10⁴ yr⁻¹ Gpc⁻³).

> Optical SN searches might have missed a significant fraction of core-collapse SNe

Work in progress

- More **simulations** to evaluate **sensitivity** and constrain **event rate**
- Further analysis of optical data to better characterize galaxy properties
- Optical follow-up of a few other possible SN candidates
- Search for additional SN candidates among fainter transients, 3XMM sources with <100 counts and more recent data

Conclusions

- The **EXTraS** algorithm for the detection of faint and short X-ray transients could detect an analogue of the **SN 2008D X-ray flare** at a **>15 times larger distance** (~300 times smaller fluence)
- After careful evaluation of the algorithm **sensitivity** and the systematic screening of the **full XMM-Newton archive**, a robust estimate of the **event rate** can be derived and compared with the **core-collapse supernova rate**