

Investigating the origin of AGN X-ray variabilit through XMM-Newton and WISE data

A. Zaino ^(1,2), C. Vignali ^(1,3), P. Severgnini ⁽²⁾, R. Della Ceca ⁽²⁾ and L. Ballo ⁽⁴⁾ ⁽¹⁾ University of Bologna (DIFA), ⁽²⁾ INAF-OABrera, ⁽³⁾ INAF-OABo, ⁽⁴⁾ XMM-Newton SOC (ESA)

ABSTRACT

An efficient diagnostic method to find local (z < 0.1) Compton-thick AGN consists in selecting sources characterized by hard X-ray colors and low X-ray to mid-IR flux ratio (HR vs. F_X/F_{IR}). This has been done efficiently in the past using 2XMM and IRAS data (Severgnini et al. 2012). I will here summarize my master thesis work, in which I tested the stability of the method outlined above using the latest 3XMM and WISE data, and I investigated its potentialities in finding interesting spectrally variable (including changing-look) XMM-Newton sources.

(1) Stability of the diagnostic diagram in classifying sources considering their average properties

Only 7 sources have shown transitions within the diagram

(2) Confirmation of the past results (e.g. surface density of CT AGN)

2XMM-IRAS

③ Selection of interesting spectrally variable X-ray sources

The availability of multiple observations in the 3XMM catalogue for ~54% of the sample has allowed us to extend the use of the diagnostic diagram to *variable* $AGN \Rightarrow$ by plotting individual observations we identified some interesting sources showing transitions between different regions of the diagnostic diagram (i.e. *changing-look* AGN – see Figure 3).

Figure 2. 2XMM-IRAS (left panel) and 3XMM-WISE (right panel) diagnostic diagram. The color code identifies the regions in which the probability to find starburst galaxies (blue symbols), unobscured, Compton-thin and Compton thick AGN (magenta, black and red symbols, respectively) is maximized.

(4) Diagnostic diagram as a tool to have hints on the origin of the observed X-ray variability

> NGC 6860: Seyfert 1/1.5 (Hiroi et al. 2013 / Lípari et al. 1993) at z=0.015

Figure 4. The HR vs. F_X/F_{IR} diagnostic diagram showing the position of the two observations of NGC 6860.

HINT: a significant variation in HR points out a *dramatic change in the column density* of the neutral gas along the line of sight

3XMM-WISE

CONFIRMED BY SPECTRAL ANALYSIS

X-ray variability driven by the crossing along the line of sight of a neutral cloud covering about 80% of the radiation emitted by the AGN (see Figure 5)

Figure 6. The HR vs. F_X/F_{IR} diagnostic diagram showing the position of the three observations of NGC 4388.

> NGC 4388: Seyfert 2 (Bottacini et al. 2012) at z=0.00842

HINT: the X-ray variability is due to an *increasing in the intrinsic emission of the AGN*

CONFIRMED BY SPECTRAL ANALYSIS

Although a little variation in N_H is clearly visible (see Figure 7), the main driver of the X-ray variability is a significant increase of the AGN intrinsic emission.

Figure 5. Values of the neutral gas column density as a function of the normalization of the intrinsic power law in OBS1 and OBS2 (black and magenta square, respectively) of NGC 6860 (left panel) obtained from the X-ray simultaneous fit (right panel).

Figure 7. Values of the neutral gas column density as a function of the normalization of the intrinsic power law in OBS1, OBS2 and OBS3 (black, red and blue square, respectively) of NGC 4388 (left panel) obtained from the X-ray simultaneous fit (right panel).

Zaino et al. in preparation

References			
 Bottacini E., Ajello M. & Grenier J., 2012, ApJS, 201, 34 	 Hiroi K., Ueda Y., Hayashida M. et al., 2013, ApJS, 207, 36 	 Lípari S., Tsvetanov Z. & Macchetto F., 1993, ApJ, 405, 186 	 Severgnini P., Caccianiga A. & Della Ceca R., 2012, A&A, 542, A46

The X-ray Universe 2017 – Rome, Italy – 6-9 June 2017