AGN feedback through UFO and galaxy-wide winds in the early Universe

Chiara Feruglio Marie-Curie AstroFIt Fellow @ INAF OATs

Thanks to:

E. Piconcelli, F. Fiore, M. Bischetti, R. Maiolino, R. Neri,
A. Ferrara, S. Gallerani,
D. Downes, C. Cicone, G. Vietri, L. Zappacosta

The X-ray Universe 2017 - Rome June 6th, 2017

Motivation

- Nuclear / galactic outflows at z=0
- Galactic outflows at high z: only a few known
 - RX J0911+0550 at z=2.8 (Weiss+12)
 - Eyelash at z=2.7 OH absorption (George+14)
 - J1148 z~6.4 : [CII] outflow

(Maiolino+12, Cicone+14)

Why APM 08279

- High redshift z=3.912
- Bright, gravitationally lensed: $L_{bol} = 7e15 m^{-1} L_o$
- CIV BAL, variable (Saturni et al. 2014, 2016, Trevese et al. 2013)

• Persistent, well studied, UFO (Chartas+09, Saez&Chartas11,Hagino+16)

Ideal to probe QSO feedback at high z

APM 08279 UFO(s)

in scenarios:

Saez & Chartas 2011
 Lensing magn. m=100
 v(UFO)=0.16-0.36c
 dM/dt(UFO)=21 Mo/yr

• Hagino+16 No/little magnification v(UFO)=0.22c

$$\dot{M}_{UFO} = 10.5 \frac{M(BH)}{2 \times 10^9} \frac{v_{UFO}}{0.3c} M_{\odot}/yr$$

APM 08279 Host galaxy

APM lensing models

Two main scenarios for the lensing model

Feruglio+17, submitted

Blueshifted component with: $v_{max} = v95\% = -1300 \text{ km/s}$

34 hour integration with NOEMA

Feruglio+17, submitted

Blueshifted component with: $v_{max} = v95\% = -1300 \text{ km/s}$

34 hour integration with NOEMA

Feruglio+17, submitted

Blueshifted component with: $v_{max} = v95\% = -1300 \text{ km/s}$

1.1" = 7.9 kpc —> no lensing magnification

Outflow max size

South-north cut through CO peak

34 hour integration with NOEMA

Feruglio+17, submitted

Blueshifted component with: $v_{max} = v95\% = -1300 \text{ km/s}$

1.1" = 7.9 kpc —> no lensing magnification

Outflow max size

South-north cut through CO peak

34 hour integration with NOEMA

Feruglio+17, submitted

Model	μ	R	M(H ₂)	<i>V_{max}</i>	\dot{M}_{OF}	\dot{P}_{OF}
		[kpc]	$[M_\odot]$	[km/s]	$[M_{\odot}/yr]$	[dyn]
model1	20	0.270	1.98×10^{8}	-1340	3.0×10^{3}	2.5×10^{37}
model2	4	0.550	9.9×10^{8}	-1340	7.4×10^{3}	6.3×10^{37}
model3	1	7.9	3.96×10^{9}	-1340	2.1×10^{3}	1.8×10^{37}

Feruglio+17, submitted

Model	μ	R	M(H ₂)	V _{max}	\dot{M}_{OF}	\dot{P}_{OF}
		[kpc]	$[M_{\odot}]$	[km/s]	$[M_{\odot}/yr]$	[dyn]
model1	20	0.270	1.98×10^{8}	-1340	3.0×10^{3}	2.5×10^{37}
model2	4	0.550	9.9×10^{8}	-1340	7.4×10^{3}	6.3×10^{37}
model3	1	7.9	3.96×10^{9}	-1340	2.1×10^{3}	1.8×10^{37}

Feruglio+17, submitted

Model	μ	R	M(H ₂)	V _{max}	\dot{M}_{OF}	\dot{P}_{OF}
		[kpc]	$[M_{\odot}]$	[km/s]	$[M_{\odot}/yr]$	[dyn]
model1	20	0.270	1.98×10^{8}	-1340	3.0×10^{3}	2.5×10^{37}
model2	4	0.550	9.9×10^{8}	-1340	7.4×10^{3}	6.3×10^{37}
model3	1	7.9	3.96×10^{9}	-1340	2.1×10^{3}	1.8×10^{37}

$$\dot{P}_{OF}/\dot{P}_{AGN} = 2 - 8$$

Momentum conserving flow

Feruglio+17, submitted

Model	μ	R	M(H ₂)	V _{max}	\dot{M}_{OF}	\dot{P}_{OF}
		[kpc]	$[M_{\odot}]$	[km/s]	$[M_{\odot}/yr]$	[dyn]
model1	20	0.270	1.98×10^{8}	-1340	3.0×10^{3}	2.5×10^{37}
model2	4	0.550	9.9×10^{8}	-1340	7.4×10^{3}	6.3×10^{37}
model3	1	7.9	3.96×10^{9}	-1340	2.1×10^{3}	1.8×10^{37}

$$\dot{P}_{OF}/\dot{P}_{AGN} = 2 - 8$$

Momentum conserving flow

Energy conserving for largest \dot{P}_{OF}

Feruglio+17, submitted

Model	μ	R	M(H ₂)	V _{max}	\dot{M}_{OF}	\dot{P}_{OF}
		[kpc]	$[M_{\odot}]$	[km/s]	$[M_{\odot}/yr]$	[dyn]
model1	20	0.270	1.98×10^{8}	-1340	3.0×10^{3}	2.5×10^{37}
model2	4	0.550	9.9×10^{8}	-1340	7.4×10^{3}	6.3×10^{37}
model3	1	7.9	3.96×10^{9}	-1340	2.1×10^{3}	1.8×10^{37}

$$\dot{P}_{OF}/\dot{P}_{AGN} = 2 - 8$$

Momentum conserving flow

Energy conserving for largest \dot{P}_{OF}

Loading factor $\eta = \dot{M}_{OF}/SFR >>1$ SFR = 25-200 Mo/yr (Weiss+07, Riechers+09)

Kinetic power

Loading factor

Fiore, Feruglio+17

Loading factor

Fiore, Feruglio+17

Conclusions

- Massive, ~8 kpc wide molecular outflow detected in APM 08279
- Hard to discriminate between momentum/energy conservig flow with current data

Conclusions

- Massive, ~8 kpc wide molecular outflow detected in APM 08279
- Hard to discriminate between momentum/energy conservig flow with current data

Conclusions

- Massive, ~8 kpc wide molecular outflow detected in APM 08279
- Hard to discriminate between momentum/energy conservig flow with current data

Thank you

