XMM-NEWTON Science Analysis System (SAS): medium and long-term strategy

Carlos Gabriel
XMM-Newton SOC - ESA/ESAC
Outline

- Science Analysis System - Requirements and Implementation
- SAS 16 - start of some changes
- Remote Interface for Science Analysis (RISA)
- Medium and Long Term Strategy
- Conclusions
Requirements for XMM-Newton’s scientific analysis system

>> basis for the official XMM-Newton products

Basics: >> interactive analysis system to be used by observers
>> capable of dealing in a similar way with all the data from all the XMM-Newton instruments

Additional requirements for an observatory’s data analysis system in the XXI century:

• run on different platforms >> serving users all over the world
• run on different ways >> for more and less experienced, occasional and dedicated
 users, X-ray and non X-ray astronomer
• user friendly >> attracting instead of repelling
• react quickly to new developments >> fundamental instrument for professional science
 in calibration / processing
• free of costs >> obvious but especially important for scientists in less
 developed countries

>> Scientific Analysis System SAS A key player in the 5000+ achievement?

(XMM UG: ~ “high quality tool ... instrumental in high productivity of XMM”)
What is SAS?

• The XMM-Newton Scientific Analysis System is a freely distributed suite of programs (“tasks”) for dealing with data from all XMM-Newton Instruments

• All tasks can run from a dedicated GUI or from the command line

• Tasks are written in C++ and F90/95

• Perl and shell scripts constitute “metatasks” (users can easily construct them)

• SAS compiles on: GNU/Linux and Mac OS X (Solaris abandoned years ago), and it is distributed in several flavors and as universal VM

• It has been developed by ~ 30 programmers, working in 6 different countries, and it is maintained (and further developed!) by ~ 4-5 FTEs

• A subset of the SAS is used as the official pipeline (PPS) for reducing the data to calibrated event lists, images, spectra, source lists (and more) distributed

 * to the PI observer ~ 2-3 weeks after the observation was performed

 * to the world via the XMM-Newton Scientific Archive (XSA) one year later
SAS maintenance model in the last years

Small team dealing not only with most of the SAS maintenance, but also with all of the PPS
 • only possible at the high level due to experience and excellence of team

Distributing SAS in many binaries (32- + 64-bit versions, many Linux & Mac versions)
 • making easy its installation to the final user
 • maximising scientific return
 • … but also increasing workload on our side

>> need to redirect efforts… first steps:
 • reduce number of platforms
 • simplify SAS building procedures
 • start thinking in the long-term (aka post-operational phase)
SAS 16.0 released on 16/1/17

- SAS compiled with GNU GCC 6.2, including **gfortran 6.2** (away from NAG fortran compiler)
 - Compliance with newest C++ and Fortran coding standards
 - Main element of this release, it implied a very large effort by SAS team ---
 - (a pre-requisite for future SAS compilation at user’s side...)

- No 32bits binaries anymore + reduction to few 64bits binaries

Linux 64:

<table>
<thead>
<tr>
<th>RHEL 6.8</th>
<th>2.6.32</th>
<th>2.12</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ubuntu 16.04.1LTS</td>
<td>4.4.0</td>
<td>2.23</td>
</tr>
</tbody>
</table>

MacOS:

<table>
<thead>
<tr>
<th>MacOS 10.10.5 (Yosemite)</th>
<th>Darwin 14.5.0</th>
<th>1213.0.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>MacOS 10.11.6 (El Capitan)</td>
<td>Darwin 15.6.0</td>
<td>1226.10.1</td>
</tr>
<tr>
<td>MacOS 10.12.3 (Sierra)</td>
<td>Darwin 16.3.0</td>
<td>1238.0.0</td>
</tr>
</tbody>
</table>

* + 1 universal SAS-VMs (64bits) - Ubuntu 16.04.1

Already in SAS 15

New in SAS 16
Remote Interface for Science Analysis (RISA)
Medium- and long-term strategy

On top of “normal” maintenance (and development)... working at the same time on Post-ops

• to be better prepared if something leads to termination of XMM-Newton
• to reduce the work which will be needed for legacy during the post-operational phase
 (limited strictly to 2 years)

Main ideas wrt SAS data processing after EoM:

A. preserve a running SAS as long as possible
 A1) SAS Virtual Machine … Dockers (≥ 10 years)
 A2) RISA (Remote Interface for Science Analysis) (5-10 years longer)
B. give SAS code to community (re-use (Athena…)? ... further development?)

To make possible B means: reducing complexity = modernising
B1) Compilers: maintaining close correspondence with new compilers
B2) Migration to Python in 3 areas: graphical, replacing PERL, replacing calls to HEASOFT
B3) Simplify configuration and improve documentation: making possible / easy building from
 source & source maintenance

Four years detailed plan (2017-2020) based on these lines
SAS VM + RISA == SAS on the net

A1 - SAS is distributed since 2006 also as Virtual Machine
Estimation: such a VM could run after EoM in the most diverse OS’s for ≥ 10 years

Proven: SAS-VM (2006) running today without any problem on actual OS’s

A2 - RISA is a fundamental component in our long-term strategy ... it is already working though:
• on-the-fly reprocessing of archival data with latest SAS and calibration
• filtering and light data reduction services

>> integration in XSAv9.4
>> first steps in the way to a more complete / full RISA I/A service

RISA post-ops thought so far to be SAS-VM based ...
(> final SAS packed in one OS… extended life [5-10 years] in a central place)

XMM-Newton Solaris 8 operational machines (from 2004!) replaced these days…

>> RISA is an ideal system for experimenting replacement of SAS-VM by Dockers… (2018)
(Dockers would ease combination of SAS data reduction with other S/W)
Compilers, configuration and builds

B1) SAS 16: Transition to GNU provided gfortran compiler

at the same time, most modern C++ compiler version used: GCCv6.2

>> serious scrutiny of source code
>> most up-to-date standards both in Fortran 90 and in C++

Pre-requisites for providing source code for SAS compilation at user’s side
• free compilers ✔
• code up-to-date with standards ✔ (… 2019 … 2021 …)
 + simplified configuration and building procedures
 + documentation
 + ✔ SAS built by SAS experts
 + ✔ SAS built by S/W experts (2018)
 + ✔ SAS built by “normal” users (2019)
Moving areas to Python

Why Python?

- Simplifying SAS & PPS
 >> more maintainable
- Pre-condition for a future package to be given to the community

Stepwise introduction in SAS/PPS:

- graphics area: first products (2017)
- graphics area: replacement of PGPLOT & Grace (2018-19)
- scripting area: replacing PERL (yes, lot of work... 41 scripts in SAS, some pretty complex) (2019)
- Heasoft area: replacing tasks depending on Heasoft (2020)
Making easier to build & maintain a running SAS

B3 - Configuration / build / documentation

Two main problems for “aliens” to deal with SAS on the source code level

- SAS is a complex piece of software >> SAS is difficult to build…
 1. replace NAG fortran compiler by gfortran ✔
 2. simplify build & configuration … extend documentation so that SAS experts can build ✔ (2017)
 3. simplify more … extend documentation so that S/W experts can build (2018)
 4. simplify even more … extend documentation so that ‘aliens’ can do it (2019)

- To maintain S/W written by others is difficult (don’t tell us…!)

 Internal documentation is essential - Improve so that non-experts can cope with

 1. I/F type S/W (OAL, CAL, DAL) (2017-18)
 2. S/W type II (beyond calibrated event lists…) (2019)
 3. Rest of the S/W (2020)

This will be needed even before / independently of Post-ops
Summary

• SAS: maintenance efforts not decreasing, necessary for maximisation of scientific return

• Evolution: taking into account post-mission needs

• Optimising the timing for necessary structural changes, with the aim of
 • keeping analysis capabilities for decades after EoM
 • making possible maintenance of SAS code by community