Probing the Interstellar Dust towards the Galactic Center Using X-ray Dust Scattering Halos

Max-Planck-Institut für extraterrestrische Physik

Chichuan Jin¹, Gabriele Ponti¹, Frank Haberl¹, Randall Smith² ¹Max-Planck-Institut für extraterrestrische Physik, Garching, Germany, 85741 ²Smithsonian Astrophysical Observatory, 60 Garden Street, Cambridge, MA 02138, USA

Galactic Centre Line-of-Sight

♦ Galactic Centre (GC) harbours many X-ray sources and is heavily extincted $(N_{\rm H} \sim 10^{23} {\rm cm}^{-2}) =>$ significant

the line-of-sight (LOS) of X-L ray sources, thereby reducing xl the source flux and producing a halo around it, i.e. the X-ray dust scattering halo.

- source (1-x)l $I_{sca}^{(1)}(\theta) = F_X N_{H,sca} \int_{E_{min}}^{E_{max}} S(E) \int_0^1 \frac{f(x)}{(1-x)^2} \int_{a_{min}}^{a_{max}} n(a)$ $\times \frac{d\sigma_{sca}(a, x, E, \theta)}{d\Omega} da dx dE$
- dust scattering opacity => potential spectral biases.
- \diamond Dust scattering was <u>never studied in detail or properly</u> considered for any GC X-ray sources.
- \diamond Interstellar Dust distribution and properties (e.g. grain size distribution & abundances) along the GC direction is unknown and difficult to determine.

AX J1745.6-2901

- > An eclipsing neutron star X-ray binary at 1.45 arcmin away from Sgr A*, $N_{\rm H}$ ~3x10²³cm⁻²
- > Being <u>X-ray bright and transient</u>: allowing a directly measurement of background diffuse emission.
- > Well observed: within the FoV of hundreds of obs of Sgr A* by XMM-Newton and Chandra.

Halo Radial Profile Fitting

Spectral Bias & Correction

X-ray dust scattering halo can introduce severe spectral biases, which can be corrected by our new Xspec models.

Spectrum	$N_{ m H, \ abs}$	Γ _{2-10 keV}	F _{2-4 keV}	F _{4-6 keV}	F _{6-10 keV}
	$(10^{22} \text{ cm}^{-2})$			$(10^{-12} \text{ erg cm}^{-2} \text{ s}^{-1})$)
Spec (15-40")	40.9 ± 0.6	3.06 ± 0.04	15.2 ± 0.1	68.4 ± 0.4	97.8 ± 0.5
Spec (20-80'')	40.5 ± 0.4	3.38 ± 0.04	21.8 ± 0.1	86.3 ± 0.5	107.3 ± 0.6
Spec_cor (15-40")	38.8 ± 0.6	3.01 ± 0.04	14.1 ± 0.1	60.7 ± 0.3	88.6 ± 0.5
Spec_cor (20-80")	39.1 ± 0.6	3.06 ± 0.04	14.5 ± 0.1	62.3 ± 0.3	89.5 ± 0.5

from XMM-Newton and Chandra obs in the past 20 years in the 2-4, 4-6 and 6-10 keV bands, using two major foreground dust layers plus a halo wing component.

GC Foreground Dust Distribution

- Y (kpc) o Local Arm -5 X (kpc) Percentage of Dust in Layer-2 Number 0 0
- <u>Dust Layer-1</u>: local to AX J1745.6-2901 and contains 26% of the total LOS dust.
- Dust Layer-2: most likely in the Galactic disk and contains 74% LOS dust, associated with MCs distributed along the spiral arms.
- Halo Wing: an extra small dust grain population ($\lambda < 600$ Å).
- Uncertainties: variation of dust grain size distribution and

Conclusions

• For the first time, the X-ray dust scattering halo around a GC X-ray point-like source was accurately measured and modelled, using XMM-Newton and Chandra obs. • We find most of the GC foreground dust and gas is located in the Galactic disk rather than in the GC CMZ. • X-ray dust scattering halo can severely bias the source spectra. We create Xspec models to correct for this bias.

abundances along one GC LOS, and between different GC LOSs.

References

[1] Jin C., Ponti G., Haberl F., Smith R., 2017, MNRAS, 468, 2532; [2] Smith R., Valencic L. A., Corrales L., 2016, ApJ, 818, 143;

[3] Valencic L. A., Smith R. K., 2015, ApJ, 809, 66; [4] Ponti G., Bianchi S., Muñoz-Darias T., et al., 2015, MNRAS, 446, 1536; [5] Predehl P., Schmitt J. H. M. M., 1995, A& A, 293, 889; [6] Mathis J. S., Rumpl W., Nordsieck K. H., 1977, ApJ, 217, 42

For Further Information, Please Contact C. Jin at chichuan@mpe.mpg.de