

New results about the Accretion Flow in *Super-Eddington* NLS1s from XMM-Newton Observations

Chichuan Jin¹

in collaboration with C. Done², M. Ward², E. Gardner²

¹Max-Planck-Institut für extraterrestrische Physik, Germany ²Department of Physics, Durham University, UK

RX J0439.6-5311: the most robust super-Eddington 'Simple' NLS1

Gallo et al. (2006): X-ray simple & X-ray complex NLS1s

≽ z=0.243

- Unobscured, clean line-of-sight
- Radio Quiet (no jet component)
- > Very soft X-ray spectrum: $\Gamma \sim 2.2$
- Hβ FWHM ~ 700 km/s, single-epoch black hole mass 5x10⁶ M_☉
- L/Ledd =12.9, highest among all 92 bright AGN in Grupe et al. (2010)

(Jin et al. 2017b, submitted)

RE J1034+396: first AGN QPO Detection, Alston's talk (a typical 'simple' super-Eddington NLS1)

X-ray Properties

X-ray Spectral Fitting and Model Degeneracy

1. 'simple' X-ray spectra, but NOT less challenging to understand

2. We need variability to break the spectral degeneracy

X-ray Variability – Energy Dependent

X-ray Variability Spectra

f-differentiated RMS spectra & Covariance Spectra

X-ray Variability Spectra simultaneous fit to all the spectra

Cross-spectra & time-lag Analysis

soft X-rays leading hard X-rays with high coherence!

Cross-spectra & time-lag Analysis

low-f lag-spectrum also favors soft X-ray Comptonisation

MPE

Best Inferred Geometry for the X-ray Emitting Region disc + hard X-ray Compt + soft X-ray Compt + weak refl.

CompTT-SE (+rfxconv) keV² (Photons cm⁻² s⁻¹ keV⁻¹ 10 $\chi^2_{,v} = 1293/1104$ 10-4 SMBH Refl:longer light travel time 10-5 Soft X-ray Hard X-ray Puffed-up Inner Corona Thin Disc Corona Disc 1.4 Ratio 4 ksec time-lag: R_{SX} 80 Rg for $M=10^7 M_{\odot}$ 0.8 200 Rg for M=4x10⁶ M_o 10 Energy (keV)

see Gardner & Done (2014) for a full spectral-timing modeling for PG 1244+026

Multi-wavelength Properties

Outflows in BLR and NLR

blue: PG 1244+026; gray: 1H 0707-495; red: RX J0439.6-5311

Outflows in BLR and NLR

Component	Line-shift $(km \ s^{-1})$	FWHM $(km \ s^{-1})$	EW (Å)
	[O III]	λ5007	
Gaussian-1	-290 ± 30	660 ± 80	2.0 ± 0.4
Gaussian-2	-860 ± 60	1940 ± 70	6.0 ± 0.4
total	-	1360 ± 180	8.0 ± 0.6
	Н	β	
Gaussian-1	150 ± 20	440 ± 60	2.8 ± 0.6
Gaussian-2	390 ± 110	1340 ± 140	5.2 ± 1.0
Gaussian-3	-860 ± 70	7580 ± 240	20.4 ± 0.5
NC		-	0.6 ± 0.3
total	-	850 ± 170	29.0 ± 1.3

Standard Geometrically Thin Outer Disc

Standard accretion disc temperature profile down to 900 angstrom, or down to R \sim 190-380 Rg for M=5x10^6 ${\sim}10^7~M_{\odot}$

Broadband SED of RX J0439.6-5311 – a robust super-Eddington NLS1

Broadband SED of RX J0439.6-5311 – a robust super-Eddington NLS1

$F_{\text{opt}} \propto \cos i \ (M\dot{M})^{2/3}$ Davis & Laor (2011)

Table 3. Comparison of the mass accretion rate through the outer disc (\dot{m}_{out}) and the observed Eddington ratio (L_{bol}/L_{Edd}) for L_1 and L_2 in Fig. 7. We assume 30° inclination angle and zero spin. A higher spin or a larger inclination angle will further increase the \dot{m}_{out} values (see DJ16).

BH Mass (M_{\odot})	5×10^{6}	7×10^{6}	1×10^7	1.8×10^7
L_1/L_{Edd}	6.5	4.6	3.2	1.8
L_2/L_{Edd}	5.4	3.8	2.7	1.5
<i>m</i> out	23.8	12.1	5.9	1.8

 $L_1 = 1.2 L_2 = 0.4 L_3 = 10.8 L_{IR}$

A Global Picture of the super-Eddington Accretion Flow in RX J0439.6-5311

Other 'Simple' *Super-Eddington* NLS1s:

- ♦ RE J1034+396 (e.g. Gierlinski et al. 2008; Middleton et al. 2009; 2011) first AGN QPO detection
- ♦ RX J0136.9-3510 (e.g. Grupe et al. 2004; Jin et al. 2009) Eddington Ratio ~13!
- ♦ PG 1244+026 (e.g. Jin et al. 2013; Kara et al. 2014; Alston et al. 2014) similar mass and mass accretion rate to 1H 0707-495, but with totally different X-ray spectral-variability (Done & Jin 2016)
- ♦ RX J1140.1+0307 (e.g. Miniutti et al. 2009; Ai et al. 2011; Jin et al. 2016) a super-Eddington IMBH, M~10⁵ M_☉
- ♦ RX J0439.6-5311 (e.g. Jin et al. 2017a, b)

the so-far most extreme and robust super-Edd simple NLS1

♦ Others: Ton S180, Mrk 493, RBS 769, Mrk 142, etc.

similar X-ray spectra and broadband SED

MPE

Broadband Comparison between 'simple' and 'complex' super-Eddington NLS1s

Broadband Comparison between 'simple' and 'complex' super-Eddington NLS1s

Similar black hole mass, mass accretion rate;

Similar optical/UV continuum and line emission;

but totally different X-ray spectral variability?! (viewing angle effect)

A Unified Picture for All Super-Eddington NLS1s

Super-Eddington Narrow-Line Seyfert 1s

(Jin et al., 2017b, submitted)

Similar Accretion Flow Geometry and viewing angle effect for ULX, NLS1, WLQs

Super-Eddington Accretion

- Thin outer disc, puffed-up inner disc, disc wind
- Viewing angle effect relative to the puffed-up disc region and/or disc wind
- ➢ ULX vs. ULS (e.g. Gu et al. 2016)
- WLQ: X-ray normal vs X-ray weak (e.g. Luo et al. 2015)
- Super-Eddington NLS1: X-ray 'simple' vs 'complex', low-redshift analogs of WLQs (Jin et al. 2017b)

Conclusions:

- X-ray spectral-timing study and simultaneous multiwavelength study are crucial to improve our understanding of these extreme accretion flows in SMBH:
- Use deep XMM-Newton observations. Use OM.

Thank you!

please contact C. Jin at <u>chichuan@mpe.mpg.de</u>