Turbulence in the intracluster medium: XMM-Newton Legacy

Ciro Pinto

Andy Fabian, Jeremy Sanders, Jelle De Plaa, N. Werner, A. Ogorzalek, I. Zhuravleva, Y-Y Zhang, L. Gu, J. Ahoranta, A. Finoguenov, R. Canning

Clusters of galaxies

100s-1000s galaxies

~ 1 Mpc

10⁷⁻⁸ K intracluster medium (ICM)

collisional equilibrium $Y = n_H n_e V = f(T)$

X-ray and Optical images of the Perseus cluster central 185 kpc (Fabian et al. 2011)

Galaxies	~ 1% mass	Optical	Baryonic
ICM	~ 9% mass	X-ray	matter
Dark matter	~ 90% mass	Gravity	

Theory predicts cooling flows

Cooling time shorter than age

 \rightarrow mass deposition towards core

100-1000 M_{sun} yr⁻¹ for clusters

0.1-1 M_{sun} yr⁻¹ for galaxies

Fabian 2012 – Perseus (figure by J. Sanders)

Cooling flows are missing

XMM/RGS grating spectra

Low cooling rates $\sim 10s M_{\odot} yr^{-1}$

Cool (< 1 keV) gas missing or significantly depleted

Centaurus cluster core (10 kpc)

Centaurus cluster inner core (5 kpc)

Ellipticals / groups: O VII cooling gas

What is heating the ICM?Galactic windsAGN outflows

AGN feedback may offset cooling

Cavity power VS ICM clusters (figure by J. Hlavacek-Larrondo)

Energy needed to create a cavity = internal (thermal) energy + work to inflate

H = E + pV

Dissipation of Turbulence

Heating VS Cooling - Zhuravleva+14

Mach numbers required to balance cooling

Through line widths and ratios in XMM/RGS spectra (CHEERS catalog, talk by J. De Plaa)

Perseus: Fe XVII resonant scattering

Wavelength (Å)

Hitomi

Velocity dispersion of 160-200 km/s, just enough to balance cooling and sustain the population of ultrarelativistic electrons (radio synchrotron mini-halo)

Complex solution(s)

- Which processes are producing the heat ? AGN (core?), mergers + sloshing (outskirts?), cosmic rays
- How exactly is the heat propagated throughout the cluster ? Shocks, bubbles, sound waves, ...
- → How exactly is the heat released to the ICM ? Dissipation within bubble-debris, mixing, ...

Velocity dispersion generated in situ or quickly transferred?

Need: observations of AGN vs merging dominated clusters

X-ray Facilities

XMM-Newton 1D Line broadening, shift, RS

Chandra Shocks, fluctuations

XARM (2021) 2D Line broadening, shift, RS

Energy (keV)

XMM-Newton Turbulence Legacy

What else can we do right now?

Sanders + 2013 : 56 objects Pinto + 2015 : 44 objects This project : 157 objects

Upper-limits on velocity broadening Resonant scattering Fe XVII, XVIII, ...

Ζ

Some examples

Take away message

- ICM is *cooling* down below 1 keV
- But cooling is highly suppressesed
- AGN is likely dominating in the core, but ...
- ... too few comparisons data-vs-models
- ... not clean comparisons (AGN-vs-merger clusters)
- ... conflicting results from simulations

Thanks, questions?

Bonus

How to measure turbulence?

1. Line widths

Upper limits in most cases (instrumental limits – statistics)

2. Resonant scattering

Accurate lower limits (atomic data – high Mach numbers issues)

3. Surface brightness fluctuations

(Substructures, theoretical models, stat.)

Sanders+13 Pinto+15

Sanders+08 Werner+09 de Plaa+12

Sanders+12 Zhuravleva+14 Walker+15

Line widths

Equations

$$c_s = \sqrt{(\gamma kT / \mu m_p)}$$

Sound speed

$$\epsilon_{turb} / \epsilon_{therm} = (V_{los}^2 / kT) \mu m_{p}$$

$$Ma_{REQ} \approx 0.15 \left(\frac{n_e}{10^{-2} \,\mathrm{cm}^{-3}}\right)^{1/3} \left(\frac{c_s}{10^3 \,\mathrm{km} \,\mathrm{s}^{-1}}\right)^{-1} \left(\frac{l}{10 \,\mathrm{kpc}}\right)^{1/3}$$

% of energy in turbulence:

Mach number require to balance cooling

Bonus NGC1404 vs Fornax

NGC 4636: CX or scattering?

