

X-ray Universe Rome, Italy 8 June 2017

XMM-Newton observations of the inner accretion flow in AGN

Erin Kara

ekara@astro.umd.edu Hubble Fellow & Joint Space-Science Institute Prize Fellow

In collaboration with...

- Abdu Zoghbi
- Andy Fabian
- Phil Uttley
- Will Alston
- Sara Frederick
- Jon Miller
- Jane Dai
- Michael Parker

- Ed Cackett
- Chris Reynolds
- Dan Wilkins
- Poemwai Chainakun
- Andy Young
- Michal Dovciak
- Barbara De Marco
- Chia-Ying Chiang
- NuSTAR AGN Team

(Those present at XRU in **bold**)

XMM-Newton and inner accretion flows

Seyfert Galaxies

Alternative spectral models

Timing can break these degeneracies

Spectral-timing of 1H0707-495

Fabian et al. 2009

Spectral-timing of 1H0707-495

Fabian et al. 2009

Discovery of the soft band lag

Alternative interpretations?

Can obscuration explain the lags?

Miller, Turner et al., 2010

Alternative interpretations?

Can obscuration explain the lags?

Miller, Turner et al., 2010

Iron K lag is seen at high frequencies!

Discovery of the iron K lag

Compton hump lags

Compton hump lags

Modelling the iron K lag

See Maria Caballero-Garcia's talk this afternoon and Michal Dovciak's Poster

But! Absorption is important!

Spectral-timing of partially absorbed Seyfert

Low-frequency soft lag due to nH decreasing during observation

EK, Zoghbi +15

Low-frequency soft lag due to nH decreasing during observation

EK, Zoghbi +15

Low-frequency soft lag due to nH decreasing during observation

Low-frequency soft lag due to nH decreasing during observation

Reverberation is common in bare Seyferts

How common is reverberation?

Spectral-timing analysis of of Seyfert Galaxy 1H1934-063 Frederick, Kara et al., in prep.

2.5

Variability in the soft lags

Uttley+14, adapted from EK+13

Iron K lag scale with black hole mass

EK+16b

Geometrical changes with Eddington Luminosity

Corona-jet connection?

Coronal Height

NVSS 1.4 GHz Radio Luminosity

 Outflowing corona, where velocity increases with accretion rate and propagates out to jet

Markoff et al., 2005

King, Lohfink & Kara 2017 Based on model of Beloborodov 1999

Disc affected by UV line-driven wind?

Correlation from Laor & Davis 2014; Eq. 12

Modelling time lags with extended coronae

Wilkins et al., 2016 Chainakun & Young 2017 v = 0.01c $f_{\text{break}} = 5 \times 10^{-2} \, \text{c}^3 / \text{GM}$

 $R = 30r_g$

 $v_{\rm visc}$ $f_{\rm break}$

See Dan's talk at 17:45 today!

(a) Lag-frequency spectrum

(b) Lag-energy, low frequency

(c) Lag-energy, high frequency

Reverberation in BHB

GX 339-14

See Phil Uttley's Talk at 17:00 today!

Reverberation in Tidal Disruption Events

What's next?

What's next?

Credit: Phil Uttley

Conclusions

- We're at the tip of the iceberg in X-ray spectral timing observations
 - Important for reflection and absorption studies!

- Reverberation offers an orthogonal approach to spectral analyses, giving insights into:
 - reverberation as a probe of disc/coronal structure
 - disc structure in BHBs and TDEs, too
- See our review: Uttley, Cackett, Fabian, EK & Wilkins `I4 for more