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Abstract

Thanks to the overall 1999-2015 Chandra, XMM-Newton and Swift observations of the supermassive black hole at the center of our Galaxy, Sgr A*, we tested the signi�cance
and persistence of the increase of �bright and very bright� X-ray �aring rate argued by Ponti et al. (2015, MNRAS, 454, 1525) who studied the 1999�2014 Chandra and
XMM-Newton public observations and the 2014 Swift monitoring. We detected the �ares observed with Swift using the binned light curves whereas those observed by
XMM-Newton and Chandra were detected using the two-steps Bayesian blocks algorithm with a prior number of change points properly calibrated and a false positive rate
for the �are detection of 0.1% (Mossoux, et al. 2015, A&A, 573, A46). We then applied this algorithm on the �are arrival times corrected from the detection e�ciency
computed for each observation thanks to the observed distribution of �are �uxes and durations. We con�rmed a constant overall �aring rate and a rise of the �aring rate for
the faintest �ares from 2014 Aug. 31 and identi�ed a decay of the �aring rate for the brightest �ares from 2013 Aug. and Nov.. A mass transfer from the Dusty S-cluster
Object (DSO)/G2 to Sgr A* is not required to produce the rise of bright �aring rate since the energy saved by the decay of the number of faint �ares during a long time
period may be later released by several bright �ares during a shorter time period.

Introduction

The closest supermassive black hole Sgr A* (≈ 4 × 106 M�; Schödel et al. 2002,
Nature, 419, 694) has a very low bolometric luminosity (≈ 1036 erg s−1; Yuan
et al. 2003, ApJ, 598, 301) and, consequently, a very low mass accretion rate
(≈ 10−6 M�/yr). Above this very low luminosity, �aring activity can be observed
in near-infrared, X-rays, sub-millimeter and radio.

We want to test the signi�cance and persistence of the increase of �aring rate argued
by Ponti et al. (2015) and to investigate the existence of a threshold of unabsorbed
�are �ux or �uence leading to any change of the unbiased �aring rate thanks to:

• additional observations performed in 2015 with Chandra and XMM-Newton;

• the overall 2006�2015 Swift campaigns;

• the improvement of the analysis methods: consistent computation of the �ux
from the extracted spectra and the corresponding calibration �les, correction
of variable PSF and vignetting due to target variable position in Swift's X-ray
telescope, correction of the detection biases,...

The results of this X-ray study are reported in Mossoux & Grosso (2017, A&A, in
press, arXiv: 1704.08102).

The X-ray observations

We work with the overall X-ray observations (2�10 keV) from 1999�2015 where Sgr A*
was observed with an o�-axis angle lower than 8′:

• XMM-Newton: 54 observations (total exposure of 2.2Ms);

• Chandra: 121 observations (total exposure of 5.8Ms);

• Swift: 1438 observations (total exposure of 5.8Ms).

⇒ 107 X-ray �ares detected.

The intrinsic flare distribution

Fluxes and durations of �ares observed
with XMM-Newton and Chandra (black
points; xxxi);
Delaunay tesselation (blue triangles)

Delaunay tesselation �eld estimator:

dobs(xxx) = di +5d|m (xxx− xxxi)
→ �are density in the convex hull

Merged detection e�ciency in percent
(pmerged) with a false positive rate for the
�are detection of 0.1% for XMM-Newton
and Chandra from 1999 to 2015, obtained
from simulated observations with variable
exposure (500 per grid point).

The observed distribution corrected
from the detection bias (Schaap & van
de Weygaert 2000, A&A, 363, L29):

dintr(xxx) = dobs(xxx)/pmerged(xxx)

The unbiased X-ray flaring rate

Average �are detection e�ciency: η =
∫ ∫

pobs(xxx)×dintr(xxx) dxxx∫ ∫
dintr(xxx) dxxx

< 1

⇒ Correction of each observational exposure: Tcorr = Tobs × η
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Figure 1: Temporal distribution
of the �are �uxes (Top panel)
and �uences (Bottom panel) cor-
rected from the sensitivity bias
and without observing gaps. The
dashed lines are only lower/upper
limits on the �are �ux and �u-
ence due to the truncated �are
duration when it begins/ends be-
fore/after the start/end of the
observation. Chandra, XMM-
Newton, Swift �ares.

With the Bayesian block algorithm, we determined a constant intrinsic �aring rate of
3.0±0.3 �ares/day, which is higher than 1.0-1.3 �ares/day of the Chandra 2012 XVP
campaign (Neilsen et al. 2013, ApJ, 774, 42) since we corrected the detection bias.

Search for flux and fluence thresholds
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Figure 2: Search for a �ux
threshold leading to a change of
X-ray �aring rate. The Bayesian
blocks are indicated with thick
black lines with the gray error
bars.
Top panel: Result of the top-to-
bottom search where at each step,
the brightest �are was removed
until a change of �aring rate was
found.
Bottom panel: Result of the
bottom-to-top search where at
each step, the faintest �are was
removed until a change of �aring
rate was found.

Flux Number of �ares Corrected of the change point Date of the change point First block Second block Signi�cance
(10−12 erg s−1 cm−2) (Flare per day) (Flare per day) (%)

Top-to-bottom < 6.5 70 28.5 2013 May 25�July 27 2.3± 0.3 0.7± 0.3 96.6
Bottom-to-top > 4.0 66 33.4 2014 Aug. 31 1.6± 0.2 5.0± 1.5 95.2
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Figure 3: Search for a �ux thresh-
old leading to a change of X-ray
�aring rate. The Bayesian blocks
are indicated with thick black lines
with the gray error bars.
Top panel: Result of the top-to-
bottom search where at each step,
the most energetic �are was re-
moved until a change of �aring rate
was found.
Bottom panel: Result of the
bottom-to-top search where at each
step, the less energetic �are was re-
moved until a change of �aring rate
was found.

Fluence Number of �ares Corrected of the change point Date of the change point First block Second block Signi�cance
(10−10 erg cm−2) (Flare per day) (Flare per day) (%)

Top-to-bottom < 121.1 65 29.6 2013 July 27�Oct. 28 2.0± 0.3 0.8± 0.4 95.1
Bottom-to-top > 91.3 54 33.4 2014 Aug. 31 1.2± 0.2 4.1± 1.3 95.1

Energy saved by the decay of the X-ray �aring rate for the less energetic �ares:
Esaved < (9.2± 4.8)× 10−8 erg cm−2.
Energy released by the rise of the X-ray �aring rate for the most energetic �ares:
Ereleased > (5.6± 2.7)× 10−8 erg cm−2

⇒ Esaved ≥ Ereleased

Conclusion

• Improved determination of the intrinsic �are distribution of Sgr A*;

• The overall X-ray �aring rate is constant;

• A decay of the faint �aring rate is detected 7 months before the DSO/G2 pericenter passage on 2014 Apr. 20 (Mar. 1-Jun. 10) at 2032Rs from Sgr A* (Valencia-S. et
al. 2015, ApJ, 800, 125) ⇒ di�cult to explain by the tidal disruption of the DSO/G2, whose stellar nature is now well established;

• The rise of the bright �aring rate 3 months after the DSO/G2 pericenter passage is con�rmed and may be produced by the energy saved by the decay of the number
of less energetic �ares that we have identi�ed ⇒ No need of mass transfer from the young star DSO/G2 to Sgr A* to explain this rise in the bright �aring rate.


