

Observatoire astronomique de Strasbourg

UNIVERSITÉ DE STRASBOURC

Sixteen years of X-ray monitoring of Sagittarius A*: Evidence for a decay of the faint flaring rate from 2013 August, 13 months before a rise in the bright flaring rate Enmanuelle Mossoux and Nicolas Grosso

Observatoire astronomique de Strasbourg, CNRS, Université de Strasbourg, UMR 7550, 11 rue de l'Université, F-67000 Strasbourg, France; emossoux@ulg.ac.be

ABSTRACT

Thanks to the overall 1999-2015 Chandra, XMM-Newton and Swift observations of the supermassive black hole at the center of our Galaxy, Sgr A^{*}, we tested the significance and persistence of the increase of "bright and very bright" X-ray flaring rate argued by Ponti et al. (2015, MNRAS, 454, 1525) who studied the 1999–2014 Chandra and XMM-Newton public observations and the 2014 Swift monitoring. We detected the flares observed with Swift using the binned light curves whereas those observed by XMM-Newton and Chandra were detected using the two-steps Bayesian blocks algorithm with a prior number of change points properly calibrated and a false positive rate for the flare detection of 0.1% (Mossoux, et al. 2015, A&A, 573, A46). We then applied this algorithm on the flare arrival times corrected from the detection efficiency computed for each observation thanks to the observed distribution of flare fluxes and durations. We confirmed a constant overall flaring rate and a rise of the flaring rate for the faintest flares from 2014 Aug. 31 and identified a decay of the flaring rate for the brightest flares from 2013 Aug. and Nov.. A mass transfer from the Dusty S-cluster Object (DSO)/G2 to Sgr A^{*} is not required to produce the rise of bright flaring rate since the energy saved by the decay of the number of faint flares during a long time period may be later released by several bright flares during a shorter time period.

INTRODUCTION

THE UNBIASED X-RAY FLARING RATE

The closest supermassive black hole Sgr A* ($\approx 4 \times 10^6 M_{\odot}$; Schödel et al. 2002, Nature, 419, 694) has a very low bolometric luminosity ($\approx 10^{36} \text{ erg s}^{-1}$; Yuan et al. 2003, ApJ, 598, 301) and, consequently, a very low mass accretion rate ($\approx 10^{-6} M_{\odot}/\text{yr}$). Above this very low luminosity, flaring activity can be observed in near-infrared, X-rays, sub-millimeter and radio.

We want to test the significance and persistence of the increase of flaring rate argued by Ponti et al. (2015) and to investigate the existence of a threshold of unabsorbed flare flux or fluence leading to any change of the unbiased flaring rate thanks to:

- additional observations performed in 2015 with Chandra and XMM-Newton;
- the overall 2006–2015 Swift campaigns;
- the improvement of the analysis methods: consistent computation of the flux from the extracted spectra and the corresponding calibration files, correction of variable PSF and vignetting due to target variable position in Swift's X-ray telescope, correction of the detection biases,...

The results of this X-ray study are reported in Mossoux & Grosso (2017, A&A, in press, arXiv: 1704.08102).

THE X-RAY OBSERVATIONS

We work with the overall X-ray observations (2-10 keV) from 1999–2015 where Sgr A* was observed with an off-axis angle lower than 8':

- XMM-Newton: 54 observations (total exposure of 2.2 Ms);
- Chandra: 121 observations (total exposure of 5.8 Ms);

Average flare detection efficiency: $\eta = \frac{\int \int p_{obs}(\boldsymbol{x}) \times d_{intr}(\boldsymbol{x}) d\boldsymbol{x}}{\int \int d_{intr}(\boldsymbol{x}) d\boldsymbol{x}} < 1$ \Rightarrow Correction of each observational exposure: $T_{corr} = T_{obs} \times \eta$

Figure 1: Temporal distribution of the flare fluxes (*Top panel*) and fluences (*Bottom panel*) corrected from the sensitivity bias and without observing gaps. The dashed lines are only lower/upper limits on the flare flux and fluence due to the truncated flare duration when it begins/ends before/after the start/end of the observation. Chandra, XMM-Newton, Swift flares.

With the Bayesian block algorithm, we determined a constant intrinsic flaring rate of 3.0 ± 0.3 flares/day, which is higher than 1.0-1.3 flares/day of the Chandra 2012 XVP campaign (Neilsen et al. 2013, ApJ, 774, 42) since we corrected the detection bias.

Figure 2: Search for a flux threshold leading to a change of X-ray flaring rate. The Bayesian blocks are indicated with thick black lines with the gray error bars. Top panel: Result of the top-tobottom search where at each step, the brightest flare was removed until a change of flaring rate was found. Bottom panel: Result of the bottom-to-top search where at each step, the faintest flare was removed until a change of flaring rate was found.

• Swift: 1438 observations (total exposure of 5.8 Ms).

 \Rightarrow 107 X-ray flares detected.

THE INTRINSIC FLARE DISTRIBUTION

	Flux	Number of flares	Corrected of the change point	Date of the change point	First block	Second block	Significance
	$(10^{-12}\mathrm{ergs^{-1}cm^{-2}})$				(Flare per day)	(Flare per day)	(%)
Top-to-bottom	< 6.5	70	28.5	2013 May 25–July 27	2.3 ± 0.3	0.7 ± 0.3	96.6
Bottom-to-top	> 4.0	66	33.4	2014 Aug. 31	1.6 ± 0.2	5.0 ± 1.5	95.2

Figure 3: Search for a flux threshold leading to a change of X-ray flaring rate. The Bayesian blocks are indicated with thick black lines with the gray error bars.

Top panel: Result of the top-tobottom search where at each step, the most energetic flare was removed until a change of flaring rate was found.

Bottom panel: Result of the bottom-to-top search where at each step, the less energetic flare was removed until a change of flaring rate was found.

10 20 30 40 10 20 30 40 Mean unabsorbed 2–10keV flux $(10^{-12} \text{ erg s}^{-1} \text{ cm}^{-2})$

Merged detection efficiency in percent (p_{merged}) with a false positive rate for the flare detection of 0.1% for XMM-Newton and Chandra from 1999 to 2015, obtained from simulated observations with variable exposure (500 per grid point).

The observed distribution corrected from the detection bias (Schaap & van de Weygaert 2000, A&A, 363, L29):

 $d_{\rm intr}(\boldsymbol{x}) = d_{\rm obs}(\boldsymbol{x})/p_{\rm merged}(\boldsymbol{x})$

		Corrected tim	e (d)				
	Fluence	Number of flares	Corrected of the change point	Date of the change point	First block	Second block	Significance
	$(10^{-10}\mathrm{erg}\mathrm{cm}^{-2})$				(Flare per day)	(Flare per day)	(%)
Top-to-bottom	< 121.1	65	29.6	2013 July 27–Oct. 28	2.0 ± 0.3	0.8 ± 0.4	95.1
Bottom-to-top	> 91.3	54	33.4	2014 Aug. 31	1.2 ± 0.2	4.1 ± 1.3	95.1

Energy saved by the decay of the X-ray flaring rate for the less energetic flares: $E_{\text{saved}} < (9.2 \pm 4.8) \times 10^{-8} \, \text{erg cm}^{-2}$. Energy released by the rise of the X-ray flaring rate for the most energetic flares: $E_{\text{released}} > (5.6 \pm 2.7) \times 10^{-8} \, \text{erg cm}^{-2}$ $\Rightarrow E_{\text{saved}} \ge E_{\text{released}}$

CONCLUSION

- Improved determination of the intrinsic flare distribution of Sgr A*;
- The overall X-ray flaring rate is constant;
- A decay of the faint flaring rate is detected 7 months before the DSO/G2 pericenter passage on 2014 Apr. 20 (Mar. 1-Jun. 10) at 2032 R_s from Sgr A* (Valencia-S. et al. 2015, ApJ, 800, 125) \Rightarrow difficult to explain by the tidal disruption of the DSO/G2, whose stellar nature is now well established;
- The rise of the bright flaring rate 3 months after the DSO/G2 pericenter passage is confirmed and may be produced by the energy saved by the decay of the number of less energetic flares that we have identified \Rightarrow No need of mass transfer from the young star DSO/G2 to Sgr A* to explain this rise in the bright flaring rate.