On the relationship between X-ray, MIR and bolometric luminosities of broad line QSOs

> Francisco J. Carrera (IFCA, CSIC-UC, Spain)

Pedro Fernández-Manteca Silvia Mateos

X-ray Universe, Roma, 6 - June - 2017

Instituto de Física de Cantabria

Outline

- Introduction
 - Unified model and X-ray/MIR emission
 - Previous results
- Our sample
- Results: L_X - L_{MIR}
 - Model fitting: Bayesian and 2D uplims
- Comparing to L_{bol} : L_X/L_{bol} and L_{MIR}/L_{bol} vs L_{bol}
- Conclusions

og vF_v (relative

Unified Model

- First-order approach: all AGN intrinsically the same
 - Main difference from orientation w.r.t. line of sight
 - Main engine is central part of AD: rest frame optical/UV
 - X-rays from AD corona: reprocessed (IC)
 - MIR from obscuring torus: reprocessed (thermal)

- Expected then ~1:1 relation between MIR (vL_{v,6µm}) and X-ray lum (L_{X,2-10keV}):
 e.g. Lutz+04 ■, Gandhi+09, Fiore+09, Mateos+15 •• ...
- But recently flattening at high L_{MIR} : (Stern'15)
 - Surprising within UM: if anything the opposite (receding torus... Simpson'05)
 - But agreement with $\alpha_{OX}\downarrow$ when $L_{opt}\uparrow$ (...Lusso & Risaliti'17...)

- But recently flattening at high L_{MIR} : (Stern'15)
 - Surprising within UM: if anything the opposite (receding torus... Simpson'05)
 - But agreement with $\alpha_{OX}\downarrow$ when $L_{opt}\uparrow$ (...Lusso & Risaliti'17...)

Previous results

- Chen+17: 3488 QSO1 from several samples, X-det and MIR-det
- Flattening fitted with broken power-law (broken line in log-log)
- Discuss effect of X uplims, X-ray abs., <u>X-ray flux limits</u>, SF contamination...

Previous results

- Chen+17: 3488 QSO1 from several samples, X-det and MIR-det
- Flattening fitted with broken power-law (broken line in log-log)
- Discuss effect of X uplims, X-ray abs., <u>X-ray flux limits</u>, SF contamination...

Our sample

- We wish to get the largest possible sample of luminous objects
 - SDSS DR12 QSO Paris+16: luminous objects, large coverage
 - Good z, z<4, |b|>20deg, type 1: FWHM_{CIV or CIII} or MgII>1500km/s
 - SDSS DR9: no neighbours within 5"
 - Kozłowski'17: *L*_{bol} from SDSS spectra (bol. corr. Richard+06)
 - UNWISE (Lang+14):
 - ~AllWISE "forced photometry" on SDSS DR10 sou.
 - Inter/extra-polating W2,W3 $\Rightarrow vL_{v,6\mu m} \equiv L_{MIR}$ or uplims
 - 3XMM DR5 (Rosen+17): largest (until DR6,7) X sou. cat.
 - pn exposure time >5ks
 - SDSS sources within 15arcmin of 3XMM DR5 pointing
 - FLIX: upper limits for non-detections (and exposure times for all)
 - Using flux in 0.5-12keV \Rightarrow L_X 2-10keV or uplims

Our sample

- 3844 QSO1:
 - 2447 X-det and MIR-det
 - 339 only MIR-det
 - 840 only X-det
 - 218 X-nodet and MIR-nodet

250

200

100

Ζ

Model fitting

- Kelly'07: Bayesian method (IDL, python K07):
 - Fits a straight line
 - Taking into account (gaussian) errors in X and Y
 - Allowing for intrinsic dispersion in the data σ
 - Can handle upper limits in Y
 - Uncertainties from MCMC
 - ...
- Akritas+95: Theil-Sen (R cenken):
 - Fits a straight line
 - Can handle upper limits in X and Y
 - Uncertainties from bootstrap

 $log(L_X)$ VS $log(vL_{v,6\mu m})$: MIR det

 $\log(L_X)$ VS $\log(vL_{v,6\mu m})$: full

 $\log(L_X)$ VS $\log(vL_{v,6\mu m})$: full

 $\log(L_X)$ VS $\log(vL_{v,6\mu m})$: full

What is going on?

- Several possibilities:
 - Both increasing but MIR faster
 - X-ray flattening but MIR not
 - Both flattening but MIR slower
 - ...
- Need to compare with the origin of both:
 - Bolometric luminosity L_{bol} from SDSS (Kozłowski'17)

$$-L_X/L_{bol} \sim 1/\kappa_{bol}$$
 in X-ray parlance

Conclusions

- Large sample of ~3800 optically selected type 1 QSOs:
 X-ray and MIR luminosities and upper limits
- Confirm flattening of L_X vs. L_{MIR} at the highest luminosities
 - Using upper limits in X,MIR even flatter
- Comparing to the input optical/UV radiation:
 - $-L_X/L_{bol}$ decreases with L_{bol} : saturation of corona?
 - $-L_{\text{MIR}}/L_{bol}$ flat: ~constant covering factor?