

Accretion geometry and variability of ULX pulsars

Felix Fürst (ESAC)

Dom Walton, Daniel Stern, Matteo Bachetti, Didier Barret, Murray Brightman, Fiona Harrison, Vikram Rana

and the NuSTAR ULX working group

ESA UNCLASSIFIED - For Official Us

Properties of the three known PULX

	M82 X-2	NGC 7793 P13	NGC 5907 ULX1
Pulse Period	1.37s	0.42s	1.1s
Spin-up (Þ)	2×10 ⁻¹⁰ s/s	3.5×10 ⁻¹¹ s/s	8×10 ⁻¹⁰ s/s
Orbital Period	2.5 d	64d? 🥎	5.3 d
Superorb. P.	63.8 d	?	78 d
Max. Luminosity	2×10^{40} erg/s	6×10 ³⁹ erg/s	>10 ⁴¹ erg/s
Min. Luminosity	<2.5×10 ³⁸ erg/s	\sim 4 \times 10 ³⁷ erg/s	<4×10 ³⁸ erg/s
Optical Comp.	$M > 5 M_{\odot}$	SG B9I	$M \lesssim 3 M_{\odot}$
References	Bachetti et al. 2014; Brightman et al. 2017; Dall'Osso et al. 2015	Fürst et al. 2016; Israel et al. 2017a	Israel et al. 2017b; Fürst et al. 2017; Walton et al. 2015

ESA UNCLASSIFIED - For Official Use

ESA | 16-May-17| Slide 2

+

Properties of the three known PULX

	M82 X-2	NGC 7793 P13	NGC 5907 ULX1
Pulse Period	1.37s	0.42s	1.1s
Spin-up (Þ)	2×10 ⁻¹⁰ s/s	3.5×10 ⁻¹¹ s/s	8×10 ⁻¹⁰ s/s
Orbital Period	2.5 d	64d? 🥎	5.3 d
Superorb. P.	63.8 d	? ←	78 d
Max. Luminosity	2×10^{40} erg/s	6×10 ³⁹ erg/s	>10 ⁴¹ erg/s
Min. Luminosity	<2.5×10 ³⁸ erg/s	\sim 4 \times 10 ³⁷ erg/s	<4×10 ³⁸ erg/s
Optical Comp.	$M > 5 M_{\odot}$	SG B9I	$M \lesssim 3 M_{\odot}$
References	Bachetti et al. 2014; Brightman et al. 2017; Dall'Osso et al. 2015	Fürst et al. 2016; Israel et al. 2017a	Israel et al. 2017b; Fürst et al. 2017; Walton et al. 2015

ESA UNCLASSIFIED - For Official Use

ESA | 16-May-17| Slide 3

+

Super-obital period in NGC 5907 UXL 1

 \rightarrow super-orbital, as orbit is known from pulsar timing to be ~5d

ESA UNCLASSIFIED - For Official Use

ESA | 16-May-17| Slide 4

4

AS

XMM observations as function of SO phase

Rising high phase

Minimum

Off-state and recovery + NuSTAR Maximum + *NuSTAR*

*

Fürst et al., 2017, ApJ 834, 77

ESA UNCLASSIFIED - For Official Use

ESA | 16-May-17| Slide 5

Off-states: sources disappear suddenly

NGC 5907 was "off" during first observation, and appeared at $1.6 \times 10^{40} \text{ erg s}^{-1}$ only 4 days later.

 \rightarrow Obscuration event or shut-off of accretion?

NuSTAR

Walton et al. 2015

ESA | 16-May-17| Slide 6

ESA UNCLASSIFIED - For Official Use

Spectral variations over time

Fitted with typical diskpbb model (multitemperature blackbody with variable temperature gradient) + powerlaw hard excess in bright phase

Fürst et al., 2017

ESA UNCLASSIFIED - For Official Use

ESA | 16-May-17| Slide 7

Spectrum varies with super-orbital phase

Variations are more clearly separated as function of **super-orbital phase** than as function of flux.

 \rightarrow Precessing accretion disk?

Fürst et al., 2017

ESA UNCLASSIFIED - For Official Use

ESA | 16-May-17| Slide 8

Accretion disk precession in galactic sources

Some local X-ray binaries show superorbital periods (Her X-1, SMC X-1, LMC X-4).

Periods seen in light-curve, pulse profile shape, spectral shape

Warped and precessing accretion disk calculated also by hydro simulations. → But unclear how that would look in super-Eddington case!

ESA UNCLASSIFIED - For Official Use

reprocessed (soft) X-ravs

Collimation and scattering

Dauser et al. (2017) use a simple model of multiple scatterings within a narrow cone of a puffed up accretion disk

Together with precession, modeling of super-orbital variability of NGC 5907 possible! (but requires very narrow opening angle)

ESA UNCLASSIFIED - For Official Use

M82 X-2: super-orbital variation is larger

Flux variation of M82 X-2 in *Chandra*

- → Consistent with 68d period (Brightman et al., in prep.)
- → Dynamic range is ~100x, much larger than in NGC 5907!

Brightman et al., in prep.

European Space Agency

Brightman et al., in prep.

ESA UNCLASSIFIED - For Official Use

Chandra spectra do not reveal any significant change \rightarrow Definitely not very soft or

- thermal, as expected from "propeller state"
- \rightarrow Variation due to precessing accretion disk also seems unlikely

M82 X-2: no spectral variation with SO phase

ESA | 16-May-17| Slide 12

NGC 7793 P13: pulse profile

Pulse profiles are very sinusoidal

Shape is independent of energy

Very different to Galactic (sub-Eddington sources!) → Different emission geometry?

Fürst et al., 2016

On-off difference spectroscopy

Subtracting off-phase from onphase to study spectrum of the pulsed component only

→ all sources well fit by just a cutoffpl

→ spectral parameters are similar, but significantly different!

ESA UNCLASSIFIED - For Official Use

ESA | 16-May-17| Slide 14

Summary

Pulsating ULXs show spectral variations as super-orbital and pulse phase. But what are the physics behind these variations? #twittersummary

Only 3 PULXs are currently known, with very similar *observational* properties. Their *physical* properties are still investigated.

ESA UNCLASSIFIED - For Official Use

ESA | 16-May-17| Slide 15